找回密码
 注册
查看: 471|回复: 0

R语言 untb包 theta.prob()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 13:32:45 | 显示全部楼层 |阅读模式
theta.prob(untb)
theta.prob()所属R语言包:untb

                                        Posterior probabilities for theta
                                         后验概率论旨

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Determines the posterior probability and likelihood for theta, given a count object
确定的后验概率和可能性,计数对象为THETA


用法----------Usage----------


theta.prob(theta, x=NULL, give.log=TRUE)
theta.likelihood(theta, x=NULL, S=NULL, J=NULL, give.log=TRUE)



参数----------Arguments----------

参数:theta
biodiversity parameter
生物多样性参数


参数:x
object of class count or census
对象的类别数或普查


参数:give.log
Boolean, with FALSE meaning to return the  value, and default TRUE meaning to return the (natural) logarithm of the value
布尔值,FALSE这意味着返回值,默认TRUE的这意味着返回值(自然)对数


参数:S, J
In function theta.likelihood(), the number of individuals (J) and number of species (S) in the ecosystem, if x is not supplied.  These arguments are provided so that x need not be specified if S and J are known.
在功能theta.likelihood(),个人(J)和种数(S)在生态系统中,如果x是不提供的。这些参数,使x如果S和J被称为不指定。


Details

详细信息----------Details----------

The formula was originally given by Ewens (1972) and is shown on page 122 of Hubbell (2001):
该公式最初是由Ewens(1972年)和哈贝尔(2001年)第122页所示:

The likelihood is thus given by
的可能性,从而给

Etienne observes that the denominator is equivalent to a Pochhammer symbol (theta)_J, so is thus readily evaluated as Gamma(theta+J)/Gamma(theta) (Abramowitz and Stegun 1965, equation 6.1.22).
艾蒂安指出,分母是相当于一个Pochhammer符号(theta)_J,因此容易评为Gamma(theta+J)/Gamma(theta)(1965年,阿布拉莫维茨和Stegun的方程6.1.22)。


注意----------Note----------

If estimating theta, use theta.likelihood() rather than theta.probability() because the former function generally executes <STRONG>much</STRONG> faster: the latter calculates a factor that is independent of theta.
如果估计theta,使用theta.likelihood()而不是theta.probability()因为前者的功能一般执行<STRONG>的多</ STRONG>快:后者计算是独立的theta的因素, 。

The likelihood function L(theta) is any function of theta proportional, for fixed observation z, to the probability density f(z,theta).  There is thus a slight notational inaccuracy in speaking of &ldquo;the&rdquo; likelihood function which is defined only up to a multiplicative constant.  Note also that the &ldquo;support&rdquo; function is usually defined as a likelihood function with maximum value 1 (at the maximum likelihood estimator for theta).  This is not easy to determine analytically for J>5.
的似然函数L(theta)是theta成正比的任何函数,用于固定观察z,概率密度f(z,theta)。因此,有轻微的符号不准确之说“的”似然函数只定义了一个乘法常数。还要注意的是“支持”功能通常被定义为一个似然函数最大值1(theta)的最大似然估计。这是不容易的确定分析的J>5。

Note that S is a sufficient statistic for theta.
需要注意的是S是一个充分统计量为theta。

Function theta.prob() does <STRONG>not</STRONG> give a PDF for theta (so, for example, integrating over the real line does not give unity).  The PDF is over partitions of J; an example is given below.
功能theta.prob()<STRONG> </ STRONG>给一个PDFtheta(所以,例如,集成在实线不给统一)。 PDF超过J下面给出一个例子分区。

Function theta.prob() requires a count object (as opposed to theta.likelihood(), for which  J and S are sufficient) because it needs to call phi().
函数theta.prob()需要计数的对象(而不是theta.likelihood(),J和S是足够了),因为它需要调用“phi()。


(作者)----------Author(s)----------


Robin K. S. Hankin



参考文献----------References----------

&ldquo;The Unified Neutral Theory of Biodiversity&rdquo;, Princeton University Press.
neutral alleles&rdquo;, Theoretical Population Biology, 3:87&ndash;112
Handbook of Mathematical Functions, New York: Dover

参见----------See Also----------

phi, optimal.prob
phi,optimal.prob


实例----------Examples----------



theta.prob(1,rand.neutral(15,theta=2))

gg <- as.count(c(rep("a",10),rep("b",3),letters[5:9]))
theta.likelihood(theta=2,gg)

optimize(f=theta.likelihood,interval=c(0,100),maximum=TRUE,x=gg)


## An example showing that theta.prob() is a PDF:[#一个例子表明,theta.prob()是一个PDF:]

a <- count(c(dogs=3,pigs=3,hogs=2,crabs=1,bugs=1,bats=1))
x <- parts(no.of.ind(a))
f <- function(x){theta.prob(theta=1.123,extant(count(x)),give.log=FALSE)}
sum(apply(x,2,f))  ## should be one exactly.[#应该是一个准确。]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-28 10:51 , Processed in 0.020269 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表