找回密码
 注册
查看: 623|回复: 0

R语言 TUWmodel包 TUWmodel()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 13:06:25 | 显示全部楼层 |阅读模式
TUWmodel(TUWmodel)
TUWmodel()所属R语言包:TUWmodel

                                        Lumped hydrological model developed at the Vienna University of Technology for education purposes
                                         在维也纳技术大学开发的用于教育目的的集总水文模型

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

TUWmodel is a lumped conceptual rainfall-runoff model, following the structure of the HBV model.  The model runs on a daily time step and consists of a snow routine, a soil moisture routine and a flow routing routine.  See Parajka, J., R. Merz, G. Bloeschl (2007) Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments, Hydrological Processes, 21, 435-446.
TUWmodel是一个集中的概念降雨 - 径流模型,HBV模型的结构。该模型上运行,每天的时间步长,由一雪常规,土壤水分程序和流量路由程序。 Parajka,梅尔茨,J.,R. G. Bloeschl的不确定性和多目标区域水量平衡模型的校准:案例研究320奥地利流域水文过程,21,435-446(2007)。


用法----------Usage----------


TUWmodel (prec, airt, ep, area, param=c(1.2,1.2,2,-2,0,0.9,100,3.3,0.5,9,105,50,2,10,26.5), incon=c(50,0,2.5,2.5), itsteps=NULL)



参数----------Arguments----------

参数:prec
vector/matrix of precipitation input (mm/day) (ncol = number of zones)
向量/矩阵的的降水输入(毫米/天)(ncol=区域数)


参数:airt
vector/matrix of air temperatures (degC)
向量/矩阵的空气温度(摄氏度)


参数:ep
vector/matrix of potential evapotranspiration (mm/day)
潜在蒸散量的向量/矩阵(月/日)


参数:area
catchment area (km2) (vector if more zones)
流域面积(平方公里)(向量,如果更多的区域)


参数:param
vector of parameters:   <ol> SCF snow correction factor (0.9-1.5);  
的参数向量进行:<ol>SCF雪校正系数(0.9-1.5);

DDF degree day factor (0.0-5.0 mm/degC/day);  
DDF度日因子(0.0-5.0毫米/℃/天);

Tr threshold temperature above which precipitation is rain (1.0-3.0 degC);  
Tr阈值温度以上的降水是雨(1.0-3.0摄氏度);

Ts threshold temperature below which precipitation is snow (-3.0-1.0 degC);  
Ts阈值温度低于降水是雪(-3.0-1.0摄氏度);

Tm threshold temperature above which melt starts (-2.0-2.0 degC);  
Tm阈值温度以上,熔融开始(-2.0-2.0摄氏度);

LPrat parameter related to the limit for potential evaporation (0.0-1.0);  
LPrat参数有关的潜在蒸发(0.0-1.0)的限制;

FC field capacity, i.e., max soil moisture storage (0-600 mm);  
FC领域的能力,即最大土壤水分存储(0-600毫米);

BETA the non linear parameter for runoff production (0.0-20.0);  
BETA非线形参数径流生产(0.0-20.0);

k0 storage coefficient for very fast response (0.0-2.0 days);  
k0存储非常快的响应系数(0.0-2.0天);

k1 storage coefficient for fast response (2.0-30.0 days);  
k1存储系数,响应速度快(2.0-30.0天);

k2 storage coefficient for slow response (30.0-250.0 days);  
k2响应速度慢的存储系数(30.0-250.0日);

lsuz threshold storage state, i.e., the very fast response start if exceeded (1.0-100.0 mm);  
lsuz阈值的存储状态,即非常快速的响应开始,如果超过(1.0-100.0毫米);

cperc constant percolation rate (0.0-8.0 mm/day);  
cperc恒定的渗透率(0.0-8.0毫米/天);

bmax maximum base at low flows (0.0-30.0 day);  
bmax的最大碱基在低流量(0.0-30.0日);

croute free scaling parameter (0.0-50.0 day2/mm);  </ol>  see Parajka, J., R. Merz, G. Bloeschl (2007) Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments, Hydrological Processes, 21, 435-446, doi:10.1002/hyp.6253.
croute的自由缩放参数(0.0~50.0 day2/mm); </ OL> Parajka,J.,R.梅尔茨,:G. Bloeschl(2007)在区域水量平衡模型的不确定性和多目标优化校准:情况研究在320奥流域水文过程,21,435-446,DOI:10.1002/hyp.6253。


参数:incon
initial conditions for the model: SSM0 soil moisture (mm); SWE0 snow water equivalent (mm); SUZ0 initial value for fast (upper zone) response storage (mm); SLZ0 initial value for slow (lower zone) response storage (mm)
为模型的初始条件:SSM0土壤水分(毫米); SWE0雪水当量(毫米); SUZ0初始值快速(上区)的响应存储(毫米);SLZ0缓慢的初始值(低区)响应存储(毫米)


参数:itsteps
length of the output (if NULL all the time series are used)
长度的输出(如果NULL所有的时间系列使用)


Details

详细信息----------Details----------

No details for now.
现在的任何细节。


值----------Value----------

TUWmodel gives a vector of simulated runoff as q (m3/s), and the following vector/matrices:
TUWmodel给出了向量的模拟径流q(立方米/秒),和下面的矢量/矩阵:

qzones simulated runoff for each zone (m3/s);
qzones每个区(立方米/秒)的模拟结果;

swe snow water equivalent (mm);
swe雪水当量(毫米);

q0 surface runoff (m3/s);
q0地表径流量(立方米/秒);

q1 subsurface runoff (m3/s);
q1地下径流量(立方米/秒);

q2 baseflow (m3/s);
q2,基流量(立方米/秒);

rmoist relative soil moisture (between 0 and 1);
rmoist土壤相对湿度(在0和1之间);

rain liquid precipitation (mm/day)
rain液态降水(月/日)

snow solid precipitation (mm/day)
snow固体降水(毫米/天)

eta actual evapotranspiration (mm/day)
eta实际蒸散量(毫米/天)


实例----------Examples----------


## ------------------------------------------------------------------------------------------------------ ##[# ##]
## Load the data[#加载数据]
data(example_TUWmodel)


## Simulate runoff and plot observed vs simulated series[#模拟径流和图观察与模拟系列]
## Lumped case (weighted means of the inputs)[#集总的情况(加权平均值的输入)]
simLump <- TUWmodel(prec=apply(P_Vils, 1, weighted.mean, w=areas_Vils),
                    airt=apply(T_Vils, 1, weighted.mean, w=areas_Vils),
                    ep=apply(PET_Vils, 1, weighted.mean, w=areas_Vils),
                    area=sum(areas_Vils),
             param=c(1.02,1.70,2,0,-0.336,0.934,121,2.52,0.473,9.06,142,50.1,2.38,10,25))

plot(as.Date(names(Q_Vils)), Q_Vils, type="l", xlab="", ylab="Discharges [mm/day]")
lines(as.Date(rownames(T_Vils)), simLump$q, col=2)
legend("topleft", legend=c("Observations","Simulations"), col=c(1,2), lty=1, bty="n")

plot(as.Date(rownames(SWE_Vils)), apply(SWE_Vils, 1, weighted.mean, w=areas_Vils),
     type="l", xlab="", ylab="Snow Water Equivalent [mm]")
lines(as.Date(rownames(T_Vils)), simLump$swe, col=2)

## Distribute case (6 zones)[#分配情况(6区)]
simDist <- TUWmodel(prec=P_Vils, airt=T_Vils, ep=PET_Vils, area=areas_Vils,
             param=c(1.02,1.70,2,0,-0.336,0.934,121,2.52,0.473,9.06,142,50.1,2.38,10,25))

plot(as.Date(names(Q_Vils)), Q_Vils, type="l", xlab="", ylab="Discharges [mm/day]")
lines(as.Date(rownames(T_Vils)), simDist$q, col=2)
legend("topleft", legend=c("Observations","Simulations"), col=c(1,2), lty=1, bty="n")

plot(as.Date(rownames(SWE_Vils)), apply(SWE_Vils, 1, weighted.mean, w=areas_Vils),
     type="l", xlab="", ylab="Snow Water Equivalent [mm]")
lines(as.Date(rownames(T_Vils)), apply(simDist$swe, 1, weighted.mean, w=areas_Vils), col=2)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-28 18:35 , Processed in 0.020205 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表