找回密码
 注册
查看: 414|回复: 0

R语言 TukeyC包 TukeyC()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-10-1 12:57:53 | 显示全部楼层 |阅读模式
TukeyC(TukeyC)
TukeyC()所属R语言包:TukeyC

                                       
                                         

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

These are methods for objects of class vector, matrix or data.frame joined as default, aov and aovlist for
这些方法的对象类vector,matrix或data.frame加入为默认值,aov和aovlist


用法----------Usage----------


  ## Default S3 method:
TukeyC(x,
       y=NULL,
       model,
       which,
       error,
       sig.level=.05,
       round=2, ...)

  ## S3 method for class 'aov'
TukeyC(x,
       which=NULL,
       sig.level=.05,
       round=2, ...)

  ## S3 method for class 'aovlist'
TukeyC(x,
       which,
       error,
       sig.level=.05,



参数----------Arguments----------

参数:x
A design matrix, data.frame or an aov object.
一个设计矩阵,data.frame或aov对象。


参数:y
A vector of response variable. It is necessary to inform this parameter only if x represent the design matrix.
一个向量的响应变量。这是必要的,告知该参数只有x设计矩阵。


参数:which
The name of the treatment to be used in the comparison. The name must be inside quoting marks.
要在比较中使用的处理的名称。该名称必须是内引用标记。


参数:model
If x is a data.frame object, the model to be used in the aov must be specified.
如果x是一个data.frame对象,该模型中要使用的AOV必须被指定。


参数:error
The error to be considered.
的错误加以考虑。


参数:sig.level
Level of Significance used in the TukeyC algorithm to create the groups of means. The default value is 0.05.
等级使用的意义在TukeyC算法创建装置的基团。默认值是0.05。


参数:round
Integer indicating the number of decimal places.
整数,表示小数位数。


参数:...
Potential further arguments (required by generic).  </table>
潜在的进一步参数(需要通用)。 </ TABLE>


Details

详细信息----------Details----------

The function TukeyC returns an object of class TukeyC  respectivally containing the groups of means plus other necessary variables for summary and plot.
的功能TukeyC返回一个类的对象TukeyC的respectivally包含组汇总和图,加上其他必要的变量。

The generic functions summary and plot are used to obtain and
的通用功能summary和plot是用来获取和


值----------Value----------

The function TukeyC returns a list of the class TukeyC with the slots:
的功能TukeyC返回一个列表之类的TukeyC的插槽:


参数:av
A list storing the result of aov.
Alist存储的结果aov。


参数:groups
A vector of length equal the number of factor levels marking the groups generated.
甲向量,长度等于因子水平标记产生的基团的数目。


参数:nms
A vector of the labels of the factor levels.
因子水平的标签的向量。


参数:ord
A vector which keeps the position of the means of the factor levels in decreasing order.
一种向量,保持位置的因子水平的方法,以递减的顺序。


参数:m.inf
A matrix which keeps the means, minimum and maximum of the factor levels in decreasing order.
这使的手段,最小和最大的因素水平的递减顺序的矩阵。


参数:sig.level
A vector of length 1 giving the level of significance of the test. </table>
长度为1的一种向量,给测试的重要性的电平。 </ TABLE>


(作者)----------Author(s)----------



Jose Claudio Faria (<a href="mailto:joseclaudio.faria@gmail.com">joseclaudio.faria@gmail.com</a>)<br>
Enio Jelihovschi (<a href="mailto:eniojelihovs@gmail.com">eniojelihovs@gmail.com</a>)<br>
Ivan Bezerra Allaman (<a href="mailto:ivanalaman@gmail.com">ivanalaman@gmail.com</a>)



参考文献----------References----------


e Melhoramento de Plantas. Editora UFLA.
a biometrical approach. Third Edition.


实例----------Examples----------


  ##[#]
  ## Examples: Completely Randomized Design (CRD)[#示例:完全随机设计(CRD)]
  ## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
  ##[#]
  
  ## The parameters can be: vectors, design matrix and the response variable,[#参数可以是:向量,设计矩阵和响应变量,]
  ## data.frame or aov[#数据框或AOV]
  data(CRD2)
  
  ## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
  tk1 <- with(CRD2,
              TukeyC(x=dm,
                     y=y,
                     model='y ~ x',
                     which='x',
                     id.trim=5))
  summary(tk1)
  
  ## From: data.frame (dfm)[#从:数据框设计(DFM)]
  tk2 <- with(CRD2,
              TukeyC(x=dfm,
              model='y ~ x',
              which='x',
              id.trim=5))
  summary(tk2)
  
  ## From: aov[#:AOV]
  av <- with(CRD2,
             aov(y ~ x,
             data=dfm))
  summary(av)
  
  tk3 <- with(CRD2,
              TukeyC(x=av,
                     which='x',
                     id.trim=5))
  summary(tk3)

  ##[#]
  ## Example: Randomized Complete Block Design (RCBD)[#例如:随机区组设计(RCBD)]
  ## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
  ##[#]
  
  ## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
  ## data.frame or aov[#数据框或AOV]
  
  data(RCBD)
  
  ## Design matrix (dm) and response variable (y)[设计矩阵(DM)和响应变量(Y)]
  tk1 <- with(RCBD,
              TukeyC(x=dm,
                     y=y,
                     model='y ~ blk + tra',
                     which='tra'))
  summary(tk1)
  
  ## From: data.frame (dfm), which='tra'[#从数据框(DFM),=茶]
  tk2 <- with(RCBD,
              TukeyC(x=dfm,
                     model='y ~ blk + tra',
                     which='tra'))
  summary(tk2)
  
  ##[#]
  ## Example: Latin Squares Design (LSD)[#例如:拉丁方设计(LSD)]
  ## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
  ##[#]
  
  ## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
  ## data.frame or aov[#数据框或AOV]
  
  data(LSD)
  
  ## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
  tk1 <- with(LSD,
              TukeyC(x=dm,
                     y=y,
                     model='y ~ rows + cols + tra',
                     which='tra'))
  summary(tk1)
  
  ## From: data.frame[#从数据框]
  tk2 <- with(LSD,
              TukeyC(x=dfm,
                     model='y ~ rows + cols + tra',
                     which='tra'))
  summary(tk2)
  
  ## From: aov[#:AOV]
  av <- with(LSD,
             aov(y ~ rows + cols + tra,
             data=dfm))
  summary(av)
  
  tk3 <- TukeyC(av,
                which='tra')
  summary(tk3)

  ##[#]
  ## Example: Factorial Experiment (FE)[#示例:因子实验(FE)]
  ## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
  ##[#]
  
  ## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
  ## data.frame or aov[#数据框或AOV]
  
  data(FE)
  ## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
  ## Main factor: N[#主要因素:N]
  tk1 <- with(FE,
              TukeyC(x=dm,
                     y=y,
                     model='y ~ blk + N*P*K',
                     which='N'))
  summary(tk1)

  ## Nested: p1/N[#嵌套:P1 / N]
  ntk1 <- with(FE,
               TukeyC.nest(x=dm,
                           y=y,
                           model='y ~ blk + N*P*K',
                           which='N',
                           fl2=1))
  summary(ntk1)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-28 20:53 , Processed in 0.026509 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表