summary(TukeyC)
summary()所属R语言包:TukeyC
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Returns (and prints) a summary list for TukeyC objects.
的回报(打印)TukeyC对象的汇总列表。
用法----------Usage----------
## S3 method for class 'TukeyC'
summary(object,
参数----------Arguments----------
参数:object
A given object of the class TukeyC.
一个给定的对象的类TukeyC。
参数:complete
A logical value indicating if the summary is complete (mean difference and p-value) or only the groups.
一个逻辑值,如果是完整的总结(平均差异和p值),或仅组。
参数:...
Potential further arguments (required by generic). </table>
潜在的进一步参数(需要通用)。 </ TABLE>
(作者)----------Author(s)----------
Jose Claudio Faria (<a href="mailto:joseclaudio.faria@gmail.com">joseclaudio.faria@gmail.com</a>)<br>
Enio Jelihovschi (<a href="mailto:eniojelihovs@gmail.com">eniojelihovs@gmail.com</a>)<br>
Ivan Bezerra Allaman (<a href="mailto:ivanalaman@gmail.com">ivanalaman@gmail.com</a>)
参考文献----------References----------
参见----------See Also----------
TukeyC
TukeyC
实例----------Examples----------
##[#]
## Examples: Completely Randomized Design (CRD)[#示例:完全随机设计(CRD)]
## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
##[#]
## The parameters can be: vectors, design matrix and the response variable,[#参数可以是:向量,设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
data(CRD2)
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
tk1 <- with(CRD2,
TukeyC(x=dm,
y=y,
model='y ~ x',
which='x',
id.trim=5))
summary(tk1)
##[#]
## Example: Randomized Complete Block Design (RCBD)[#例如:随机区组设计(RCBD)]
## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
##[#]
## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
data(RCBD)
## Design matrix (dm) and response variable (y)[设计矩阵(DM)和响应变量(Y)]
tk1 <- with(RCBD,
TukeyC(x=dm,
y=y,
model='y ~ blk + tra',
which='tra'))
summary(tk1)
##[#]
## Example: Latin Squares Design (LSD)[#例如:拉丁方设计(LSD)]
## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
##[#]
## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
data(LSD)
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
tk1 <- with(LSD,
TukeyC(x=dm,
y=y,
model='y ~ rows + cols + tra',
which='tra'))
summary(tk1)
##[#]
## Example: Factorial Experiment (FE)[#示例:因子实验(FE)]
## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
##[#]
## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
data(FE)
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
## Main factor: N[#主要因素:N]
tk1 <- with(FE,
TukeyC(x=dm,
y=y,
model='y ~ blk + N*P*K',
which='N'))
summary(tk1)
## Nested: p1/N[#嵌套:P1 / N]
ntk1 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + N*P*K',
which='N',
fl2=1))
summary(ntk1)
## Nested: k2/p2/N[#嵌套:k2/p2/N]
ntk2 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + N*P*K',
which='N:K',
fl2=2,
fl3=2))
summary(ntk2)
## Nested: k1/n1/P[#嵌套:k1/n1/P]
ntk3 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + P*N*K',
which='P:N:K',
fl2=1,
fl3=1))
summary(ntk3)
## Nested: p1/n1/K[#嵌套:p1/n1/K]
ntk4 <- with(FE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + K*N*P',
which='K:N',
fl2=1,
fl3=1))
summary(ntk4)
##[#]
## Example: Split-plot Experiment (SPE)[#例如:裂区试验(SPE)]
## More details: demo(package='TukeyC')[更多细节:演示(包=TukeyC“的)]
##[#]
data(SPE)
## The parameters can be: design matrix and the response variable,[#参数可以是:设计矩阵和响应变量,]
## data.frame or aov[#数据框或AOV]
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
## Main factor: P[#主因子:P]
tk1 <- with(SPE,
TukeyC(x=dm,
y=y,
model='y ~ blk + SP*P + Error(blk/P)',
which='P',
error='blk'))
summary(tk1)
## Nested: p1/SSP[#嵌套:p1/SSP]
tkn1 <- with(SPE,
TukeyC.nest(x=dm,
y=y,
model='y ~ blk + SP*P + Error(blk/P)',
which='SP',
error='Within',
fl2=1 ))
summary(tkn1)
data(SSPE)
## From: design matrix (dm) and response variable (y)[#:设计矩阵(DM)和响应变量(Y)]
## Main factor: P[#主因子:P]
tk1 <- with(SSPE,
TukeyC(dm,
y,
model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='P',
error='blk'))
summary(tk1)
# Main factor: SP[主要因素:SP]
tk2 <- with(SSPE,
TukeyC(dm,
y,
model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SP',
error='blk:SP'))
summary(tk2)
# Main factor: SSP[主要因素:SSP]
tk3 <- with(SSPE,
TukeyC(dm,
y,
model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SSP',
error='Within'))
summary(tk3)
## Nested: p1/SSP[#嵌套:p1/SSP]
tkn1 <- with(SSPE,
TukeyC.nest(dm,
y,
model='y ~ blk + SSP*SP*P + Error(blk/P/SP)',
which='SP',
error='blk:SP',
fl2=1))
summary(tkn1)
## From: aovlist[#来自:aovlist的]
av <- with(SSPE,
aov(y ~ blk + SSP*SP*P + Error(blk/P/SP),
data=dfm))
summary(av)
## Nested: pp/sp/SSP (at various levels of sp and p) [#嵌套:PP / SP / SSP(在不同级别的SP和P)]
tkn2 <- TukeyC.nest(av,
which='SSP:SP',
error='Within',
fl2=1,
fl3=1)
summary(tkn2)
tkn3 <- TukeyC.nest(av,
which='SSP:SP:P',
error='Within',
fl2=2,
fl3=1)
summary(tkn3)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|