tspc.train(TSPC)
tspc.train()所属R语言包:TSPC
Prediction using time-course gene expression
预测使用时间过程的基因表达
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Does prediction of a quantitative regression or survival outcome, using the time-course gene expression.
做的定量回归或生存结果的预测,使用时间进程基因的表达。
用法----------Usage----------
tspc.train(data, data.test, type = c("survival", "regression"), s0.perc = 0.5)
参数----------Arguments----------
参数:data
Data object with components x- a list of p by n matrix of features, one observation per column, one matrix per time point; y- n-vector of outcome measurements; censoring.status- n-vector of censoring censoring.status (1= died or event occurred, 0=survived, or event was censored), needed for a censored survival outcome.
数据对象与组件X-A列表中的p n矩阵的特点,每列的一个观察,每个时间点的一个矩阵,Y-N-矢量结果测量; censoring.status-N-矢量的审查censoring.status(1 =死亡或事件发生,0 =活了下来,审查或事件),需要审查的生存结果。
参数:data.test
Data object with components x- a list of p by n matrix of features, one observation per column, one matrix per time point; y- n-vector of outcome measurements; censoring.status- n-vector of censoring censoring.status (1= died or event occurred, 0=survived, or event was censored), needed for a censored survival outcome.
数据对象与组件X-A列表中的p n矩阵的特点,每列的一个观察,每个时间点的一个矩阵,Y-N-矢量结果测量; censoring.status-N-矢量的审查censoring.status(1 =死亡或事件发生,0 =活了下来,审查或事件),需要审查的生存结果。
参数:type
Problem type: "survival" for censored survival outcome, or "regression" for simple quantitative outcome.
问题类型:删失的生存结果的“生存”,或“回归”简单的定量结果。
参数:s0.perc
Factor for denominator of score statistic, between 0 and 1: the percentile of standard deviation values added to the denominator. Default is 0.5 (the median)
分母的分数统计,在0和1之间的因子:百分标准偏差值添加到分母。默认值是0.5(中位数)
值----------Value----------
<table summary="R valueblock"> <tr valign="top"><td>proj.obj</td> <td> projection of training data and test data</td></tr> <tr valign="top"><td>fit.obj</td> <td> fitted object using training data</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> proj.obj</ TD> <TD>的训练数据和测试数据的预测</ TD> </ TR> <TR VALIGN =“”> <TD>fit.obj </ TD> <TD>装使用训练数据的对象</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Yuping Zhang
参考文献----------References----------
Zhang Y, Tibshirani RJ, Davis RW. Predicting patient survival from longitudinal gene expression. Stat Appl Genet Mol Biol. 2010;9(1):Article41. Epub 2010 Nov 22.
实例----------Examples----------
x = list()
for(i in 1:2){
set.seed(i+123)
x[[i]] = matrix(rnorm(500*100), ncol=100)
}
y = sample(c(5:100), size=100, replace=TRUE)
censoring = sample(c(0,1), size=100, replace=TRUE)
data = list(x = x, y=y, censoring.status=censoring, genenames = as.character(paste("gene", c(1:500), sep="")), geneid = as.character(paste("gene", c(1:500), sep="")))
x = list()
for(i in 1:2){
set.seed(i+133)
x[[i]] = matrix(rnorm(500*100), ncol=100)
}
y = sample(c(5:100), size=100, replace=TRUE)
censoring = sample(c(0,1), size=100, replace=TRUE)
data.test = list(x = x, y=y, censoring.status=censoring, genenames = as.character(paste("gene", c(1:500), sep="")), geneid = as.character(paste("gene", c(1:500), sep="")))
obj = tspc.train(data, data.test, type="survival")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|