setarTest(tsDyn)
setarTest()所属R语言包:tsDyn
Test of linearity
线性测试
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Test of linearity against threshold of Hansen (1999) with bootstrap distribution
引导分布汉森(1999)对阈值的线性测试
用法----------Usage----------
setarTest(x, m, d = 1, steps = d, series, thDelay = 0, nboot=10, trim=0.1, test=c("1vs", "2vs3"), hpc=c("none", "foreach"),check=FALSE)
参数----------Arguments----------
参数:x
time series
时间序列
参数:m, d, steps
embedding dimension, time delay, forecasting steps
嵌入维,时间延迟,预测的步骤
参数:series
time series name (optional)
时间序列的名称(可选)
参数:thDelay
'time delay' for the threshold variable (as multiple of embedding time delay d)
“时间延迟”的阈值变量(如多个嵌入时间延迟d)
参数:nboot
number of bootstrap replications
引导复制数
参数:trim
trimming parameter indicating the minimal percentage of observations in each regime
微调参数表示的最小百分比在每一个政权的意见
参数:test
Type of test. See details
测试类型。查看详细资料
参数:hpc
Possibility to run the bootstrap on parallel core. See details in TVECM.HStest
可并行内核上运行的引导。查看详细资料TVECM.HStest
参数:check
Possibility to check if the bootstrap is correct by not sampling the residuals. The result given should be the same as in the original data
可能,检查引导是正确的采样的残差。在原始数据中给出的结果应该是相同的
Details
详细信息----------Details----------
Estimation of the first threshold parameter is made with CLS, a conditional search with one iteration is made for the second threshold. The Ftest comparing the residual sum of squares (SSR) of each model is computed.
的第一阈值参数的估计与CLS,条件搜索的一个迭代的第二阈值。 FTEST比较每个模型的残差平方和(SSR)计算。
where S_{i} is the SSR of the model with i regimes (and so i-1 thresholds).
S_{i}的SSR我政体(和这样的i-1阈值)的模型。
Three test are avalaible. The both first can be seen as linearity test, whereas the third can be seen as a specification test: once the 1vs2 or/and 1vs3 rejected the linearity and henceforth accepted the presence of a threshold, is a model with one or two thresholds preferable?
三个测试avalaible。可以被看作是在两个第一线性度测试,而第三个可以被看作是一个规范测试:一旦1vs2或/和1vs3驳回的线性度和从此接受一个阈值的存在下,与一个或两个阈值优选是一个模型?
Test 1vs2: Linear AR versus 1 threshold TAR
测试1vs2:线性AR与1阈值TAR
Test 1vs3: Linear AR versus 2 threshold2 TAR
测试1vs3:线性AR与2 threshold2 TAR
Test 2vs3: 1 threshold TAR versus 2 threshold2 TAR
测试2vs3:1阈值与2 threshold2 TAR TAR
The both first are computed together and avalaible with test="1vs". The third test is avalaible with test="2vs3".
两个第一计算在一起和avalaible与测试=“1VS”。第三个测试是avalaible的的测试=“2vs3”。
The homoskedastic bootstrap distribution is based on resampling the residuals from H0 model (ar for test 1vs, and setar(1) for test 2vs3), estimating the threshold parameter and then computing the Ftest, so it involves many computations and is pretty slow.
分配是根据homoskedastic引导,上重采样后的残差H0模型(AR测试1VS,SETAR(1)测试2vs3),估计阈值参数,然后计算FTEST的,所以它涉及到很多的计算,是相当缓慢的。
值----------Value----------
A object of class "Hansen99Test" containing:
一个对象类“Hansen99Test”包含:
参数:SSRs
The residual Sum of squares of model AR, 1 threshold TAR and 2 thresholds TAR
模型AR的残差平方和,TAR 1阈值和2个阈值TAR
参数:Ftests
The Ftest statistic for the test
的测试统计FTEST的
参数:PvalBoot
The bootstrap p-values for the test selected
自举的p值选择的测试
参数:CriticalValBoot
The critical values for the test selected
选定的测试的临界值
参数:Ftestboot
All the F-test computed
所有的F-检验计算
参数:firstBests, secBests
The thresholds for the original series, obtained from search for 1 thresh (firstBests) and conditional search for 2 thresh (secBests)
原始的系列的阈值,从搜索1阈值(firstBests)的条件搜索2阈值(secBests的获得)
参数:nboot,m,type
The number of bootstrap replications (nboot), the lags used (m) and the type of test (type)
自举重复数(nboot),使用的滞后(m)和类型的测试(type)
(作者)----------Author(s)----------
Matthieu Stigler
参考文献----------References----------
avalaible at: http://www.ssc.wisc.edu/~bhansen/papers/cv.htm
参见----------See Also----------
TVAR.LRtest for the multivariate version. SETAR for estimation of the model.
TVAR.LRtest多因素的版本。 SETAR模型的估计。
实例----------Examples----------
#Data used by Hansen[使用汉森的数据]
sun<-(sqrt(sunspot.year+1)-1)*2
#Test 1vs2 and 1vs3[测试1vs2和1vs3]
#setarTest(sun, m=11, thDelay=0:1, nboot=5,trim=0.1, test="1vs")[setarTest(太阳,M = 11,thDelay = 0:1,NBOOT = 5,,装备= 0.1,测试=“1VS”)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|