tar(TSA)
tar()所属R语言包:TSA
Estimation of a TAR model
一个TAR模型的估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimation of a two-regime TAR model.
两个政权的TAR模型的估计。
用法----------Usage----------
tar(y, p1, p2, d, is.constant1 = TRUE, is.constant2 = TRUE, transform = "no",
center = FALSE, standard = FALSE, estimate.thd = TRUE, threshold,
method = c("MAIC", "CLS")[1], a = 0.05, b = 0.95, order.select = TRUE, print = FALSE)
参数----------Arguments----------
参数:y
time series
时间序列
参数:p1
AR order of the lower regime
AR顺序较低的制度
参数:p2
AR order of the upper regime
AR顺序上的制度
参数:d
delay parameter
延迟参数
参数:is.constant1
if True, intercept included in the lower regime, otherwise the intercept is fixed at zero
如果为True,拦截在较低的政权,否则拦截被固定在零
参数:is.constant2
similar to is.constant1 but for the upper regime
类似到is.constant1但上层政权
参数:transform
available transformations: "no" (i.e. use raw data), "log", "log10" and "sqrt"
可用的转换:“不”(即使用原始数据),“log”,“LOG10”和“开方”
参数:center
if set to be True, data are centered before analysis
如果设置为True,数据中心之前分析
参数:standard
if set to be True, data are standardized before analysis
如果设置为True,数据标准化前分析
参数:estimate.thd
if True, threshold parameter is estimated, otherwise it is fixed at the value supplied by threshold
如果为True,阈值参数估计,否则将被固定在所提供的阈值的值
参数:threshold
known threshold value, only needed to be supplied if estimate.thd is set to be False.
已知的阈值,只需要以供给如果estimate.thd被设置为假。
参数:method
"MAIC": estimate the TAR model by minimizing the AIC; "CLS": estimate the TAR model by the method of Conditional Least Squares.
参数:a
lower percent; the threshold is searched over the interval defined by the a*100 percentile to the b*100 percentile of the time-series variable
低级%;搜索的阈值时的时间间隔内所定义的a * 100百分位的b * 100百分位的时间序列变量
参数:b
upper percent
上%
参数:order.select
If method is "MAIC", setting order.select to True will enable the function to further select the AR order in each regime by minimizing AIC
如果方法是“MAIC”的,将order.select设置为True,将启用该功能,进一步选择AR顺序在每个政权最大限度地减少AIC
参数:print
if True, the estimated model will be printed
如果为True,估计模型将被打印
Details
详细信息----------Details----------
The two-regime Threshold Autoregressive (TAR) model is given by the following formula:
两个政权门限自回归模型(TAR)是由下面的公式给出:
\mbox{ if } Y_{t-d}≤ r </i>
\的mbox {} Y_ {T-D}≤R </ I>
\mbox{ if } Y_{t-d} > r.</i>
\的mbox {} Y_ {T-D}> R。</ I>
值----------Value----------
A list of class "TAR" which can be further processed by the by the predict and tsdiag functions.
类“TAR”,它可以处理由预测和tsdiag的函数列表。
(作者)----------Author(s)----------
Kung-Sik Chan
参考文献----------References----------
参见----------See Also----------
predict.TAR, tsdiag.TAR, tar.sim, tar.skeleton
predict.TAR,tsdiag.TAR,tar.sim,tar.skeleton
实例----------Examples----------
data(prey.eq)
prey.tar.1=tar(y=log(prey.eq),p1=4,p2=4,d=3,a=.1,b=.9,print=TRUE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|