truncreg(truncreg)
truncreg()所属R语言包:truncreg
Models for truncated regressions
截断回归模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimation of models with truncated explanatory variables by maximum likelihood
截断解释变量的模型,通过最大似然估计
用法----------Usage----------
truncreg(formula, data, subset, weights, na.action,
point = 0, direction = "left", ...)
## S3 method for class 'truncreg':
print(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), ...)
## S3 method for class 'truncreg':
summary(object, ...)
## S3 method for class 'summary.truncreg':
print(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), ...)
## S3 method for class 'truncreg':
logLik(object, ...)
## S3 method for class 'truncreg':
vcov(object, ...)
## S3 method for class 'truncreg':
residuals(object, ...)
## S3 method for class 'truncreg':
fitted(object, ...)
参数----------Arguments----------
参数:x, object
an object of class truncreg
一个对象的类truncreg
参数:formula
a symbolic description of the model to be estimated,
以进行估计的模型的符号描述,
参数:data
the data,
的数据,
参数:subset
an optional vector specifying a subset of observations,
一个可选的矢量指定的一个子集的观测,
参数:weights
an optional vector of weights,
可选的权重向量,
参数:na.action
a function which indicates what should happen when the data contains 'NA's,
时会发生什么数据中包含NA的一个函数,它表示,
参数:point
the value of truncation (the default is 0),
截断值(默认是0),
参数:direction
the direction of the truncation, either "left" (the default) or "right",
截断的方向,无论是"left"(默认)或"right",
参数:digits
the number of digits,
的数字位数,
参数:width
the width of the printing,
的宽度的印刷,
参数:...
further arguments.
进一步的论据。
Details
详细信息----------Details----------
The model is estimated with the maxLik package and the Newton-Raphson method, using analytic gradient and hessian.
这个模型的评估与maxLik包和Newton-Raphson方法,使用解析梯度和Hessian。
值----------Value----------
An object of class "truncreg", a list with elements:
对象的类"truncreg",元素的列表:
<table summary="R valueblock"> <tr valign="top"><td>coefficients</td> <td> the named vector of coefficients,</td></tr> <tr valign="top"><td>vcov</td> <td> the variance matrix of the coefficients,</td></tr> <tr valign="top"><td>fitted.values</td> <td> the fitted values,</td></tr> <tr valign="top"><td>logLik</td> <td> the value of the log-likelihood,</td></tr> <tr valign="top"><td>gradient</td> <td> the gradient of the log-likelihood at convergence,</td></tr> <tr valign="top"><td>model</td> <td> the model frame used,</td></tr> <tr valign="top"><td>call</td> <td> the matched call,</td></tr> <tr valign="top"><td>est.stat</td> <td> some information about the estimation (time used, optimisation method),</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> coefficients</ TD> <TD>命名的系数向量,</ TD> </ TR> <TR VALIGN = “顶”> <TD> vcov </ TD> <TD>方差矩阵的系数,</ TD> </ TR> <tr valign="top"> <TD>fitted.values </ TD> <TD>的拟合值,</ TD> </ TR> <tr valign="top"> <TD> logLik </ TD> <TD>的对数似然值, </ TD> </ TR> <tr valign="top"> <TD> gradient </ TD> <TD>对数似然在收敛的梯度,</ TD> </ TR> < TR VALIGN =“顶”> <TD>model </ TD> <TD>使用的模型框架,</ TD> </ TR> <tr valign="top"> <TD>call </ TD> <TD>匹配的呼叫,</ TD> </ TR> <tr valign="top"> <TD>est.stat </ TD> <TD>估计的一些信息(时间,优化方法),</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Yves Croissant
参考文献----------References----------
Hausman, J.A. and D.A. Wise (1976) “The evaluation of results from truncated samples: the New-Jersey negative invome tax experiment”, Annals of Economic ans Social Measurment, 5, pp.421–45.
Hausman, J.A. and D.A. Wise (1976) “Social experimentation, truncated distributions and efficient estimation”, Econometrica, 45, pp.421–5.
实例----------Examples----------
## Simulate a data.frame[#模拟数据框]
n <- 10000
sigma <- 4
alpha <- 2
beta <- 1
x <- rnorm(n,0,2)
eps <- rnorm(n)
y <- alpha+beta*x+eps*sigma
d <- data.frame(y = y, x = x)
## Use a truncated subsample[#使用截断的子样本]
dl1 <- subset(d, y>1)
## Use truncreg to estimate consistently the model[#使用truncreg一贯的估计模型]
truncreg(y~x, dl1, point = 1, direction = "left")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|