tpr(tpr)
tpr()所属R语言包:tpr
Temporal Process Regression
时空过程回归
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Regression for temporal process responses and time-independent covariate. Some covariates have time-varying coefficients while others have time-independent coefficients.
时空过程的反应和时间无关的协变量的回归。一些协变量随时间变化的系数,而另一些则与时间无关的系数。
用法----------Usage----------
tpr(y, delta, x, xtv=list(), z, ztv=list(), w, tis,
family = poisson(),
evstr = list(link = 5, v = 3),
alpha = NULL, theta = NULL,
tidx = 1:length(tis),
kernstr = list(kern=1, poly=1, band=range(tis)/50),
control = list(maxit=25, tol=0.0001, smooth=0, intsmooth=0))
参数----------Arguments----------
参数:y
Response, a list of "lgtdl" objects.
响应,列表“lgtdl”对象。
参数:delta
Data availability indicator, a list of "lgtdl" objects.
数据可用性指标,“lgtdl”对象的列表。
参数:x
Covariate matrix for time-varying coefficients.
时变系数的协方差矩阵。
参数:xtv
A list of list of "lgtdl" for time-varying covariates with time-varying coefficients.
一个列表列表“lgtdl”随时间变化的协变量随时间变化的系数。
参数:z
NOT READY YET; Covariate matrix for time-independent coefficients.
还没有准备好与时间无关的系数协方差矩阵。
参数:ztv
NOT READY YET; A list of list of "lgtdl" for time-varying covariates with time-independent coefficients.
还没有准备好,一个与时间无关的系数随时间变化的协变量列表列表“lgtdl”。
参数:w
Weight vector with the same length of tis.
tis具有相同长度的权重向量。
参数:tis
A vector of time points at which the model is to be fitted.
安装在该模型是一个向量的时间点。
参数:family
Specification of the response distribution; see family for glm; this argument is used in getting initial estimates.
响应分布的规格,请参阅familyglm;在获得初步估计,使用该参数时。
参数:evstr
A list of two named components, link function and variance function. link: 1 = identity, 2 = logit, 3 = probit, 4 = cloglog, 5 = log; v: 1 = gaussian, 2 = binomial, 3 = poisson
两个命名的部分,链接函数和方差函数列表。链接:1 = 2的身份,对数,概率,4 = cloglog,5 =log:1 = 2 =高斯,二项分布,3 =泊松
参数:alpha
A matrix supplying initial values of alpha.
矩阵提供的初始值,α。
参数:theta
A numeric vector supplying initial values of theta.
一个数字矢量提供的θ波的初始值。
参数:tidx
indices for time points used to get initial values.
指数用于获取初始值的时间点。
参数:kernstr
A list of two names components: kern: 1 = Epanechnikov, 2 = triangular, 0 = uniform; band: bandwidth
两个组件名称列表:字距:1 =叶帕涅奇尼科夫,2 =三角形,0 =均匀;带:带宽
参数:control
A list of named components: maxit: maximum number of iterations; tol: tolerance level of iterations. smooth: 1 = smoothing; 0 = no smoothing.
被命名组件的列表:麦克斯特:最大迭代次数; TOL:公差等级的迭代。平滑:1 =平滑; 0 =不进行平滑处理。
Details
详细信息----------Details----------
This rapper function can be made more user-friendly in the future. For example, evstr can be determined from the family argument.
这个说唱功能,可以更加用户友好的未来。例如,evstr可以family参数确定。
值----------Value----------
An object of class "tpr": <table summary="R valueblock"> <tr valign="top"><td>tis </td> <td> same as the input argument</td></tr> <tr valign="top"><td>alpha </td> <td> estimate of time-varying coefficients</td></tr> <tr valign="top"><td>beta </td> <td> estimate of time-independent coefficients</td></tr> <tr valign="top"><td>valpha</td> <td> a matrix of variance of alpha at tis</td></tr> <tr valign="top"><td>vbeta</td> <td> a matrix of variance of beta at tis</td></tr> <tr valign="top"><td>niter</td> <td> the number of iterations used</td></tr> <tr valign="top"><td>infAlpha</td> <td> a list of influence functions for alpha</td></tr> <tr valign="top"><td>infBeta</td> <td> a matrix of influence functions for beta</td></tr> </table>
“TPR”类的一个对象:表summary="R valueblock"> <tr valign="top"> <TD>tis </ TD> <TD>作为输入参数</ TD> < / TR> <tr valign="top"> <TD> alpha </ TD> <TD>估计时变系数</ TD> </ TR> <tr valign="top"> <TD > beta </ TD> <TD>估计与时间无关的系数</ TD> </ TR> <tr valign="top"> <TD> valpha</ TD> <TD>的矩阵方差的α,那朵</ TD> </ TR> <tr valign="top"> <TD> vbeta </ TD> <td>一个矩阵的方差,βTIS </ TD > </ TR> <tr valign="top"> <TD> niter </ TD> <TD>使用的迭代数</ TD> </ TR> <tr valign="top"> < infAlpha TD> </ TD> <TD>影响函数的列表,阿尔法</ TD> </ TR> <tr valign="top"> <TD> infBeta</ TD> < TD>的影响函数矩阵的测试版</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Jun Yan <jyan@stat.uconn.edu>
参考文献----------References----------
Fine, Yan, and Kosorok (2004). Temporal Process Regression. Biometrika.
Yan and Huang (2009). Partly Functional Temporal Process Regression with Semiparametric Profile Estimating Functions. Biometrics.
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|