gene.trait.pvalue(BUS)
gene.trait.pvalue()所属R语言包:BUS
Calculate p-value for gene-trait interaction
p值计算基因性状相互作用
译者:生物统计家园网 机器人LoveR
描述----------Description----------
To calculate p-value for null hypothesis that there is no interaction between gene and trait. There are MxT interactions between M genes and T traits. Results are given with 3 possibilities 1 for single p-value, and 3 for different types of correction. p-values are calculated based on the adjacency matrix for gene-gene interaction computed by function gene.trait.similarity.
计算虚无假设的p值是没有基因和性状之间的相互作用。有M基因和T性状之间的MXT互动。结果3的可能性1单P的价值,并为不同类型的校正3。 P-值计算为由功能gene.trait.similarity计算的基因 - 基因相互作用的邻接矩阵的基础上。
用法----------Usage----------
gene.trait.pvalue(EXP, trait, measure, method.permut = 2, n.replica = 400)
参数----------Arguments----------
参数:EXP
Gene expression data in form of a matrix. Row stands for genes and column for experiments.
基因表达数据矩阵形式。行代表基因和实验列。
参数:trait
Trait data in form of matrix. Row stands for traits and column for experiments.
矩阵形式的特征数据。行代表的性状和实验列。
参数:measure
Metric used to calculate similarity: "corr" for correlation, "MI" for mutual information.
度量用于计算互信息相似:“更正”的相关性,“智”。
参数:method.permut
A flag to indicate correction style when multiple hypotheses testing is considered. 1 for multiple traits correction, 2 for multiple genes and 3 for both genes and traits correction. The default value is 2.
一个标志,表示改正的风格被认为是多重假设测试时。多性状校正,多基因和3这两个基因与性状校正2 1。默认值是2。
参数:n.replica
Number of permutations for the correction of multiple hypothesis testing; default value is 400.
多种假设检验校正的排列数,默认值是400。
Details
详情----------Details----------
According to a permutation method, we use the empirical distribution of some statistics to estimate the p-value. For single p-value the empirical distribution is a vector of P (number of random replicates for each test) test values. It is then possible to correct p-value in different ways: method.permut = 1, it is the empirical distribution of a vector with length of TxP, corrects for the multiple traits tested; method.permut = 2, it is the empirical distribution of a vector with length of MxP, corrects for the multiple genes tested; method.permut = 3, it is empirical distribution of a vector with length of MxTxP, corrects for the multiple traits and genes tested.
根据置换的方法,我们使用的一些统计数据的经验分布估计的p值。对于单p值的经验分布是P的矢量(随机数重复为每个测试)的测试值。然后就可以纠正p值,以不同的方式:method.permut = 1,它是TXP长度的向量的经验分布,测试的多个性状纠正; method.permut = 2,它是经验分布一个MXP长度的向量,测试多个基因的纠正; method.permut = 3,它是经验一个长度MxTxP向量分布,纠正多个性状和基因测试。
值----------Value----------
参数:single.perm.p.value
A matrix of single p-values obtained with permutation method + beta distribution for extreme values (for MI) or obtained with the exact distribution computed directly by cor.test (for correlation)
矩阵排列法+β(MI)的极端值分布或获得直接由cor.test计算的确切分布所得的单一P-值(相关)
参数:multi.perm.p.value
A matrix of corrected p-values obtained with permutation method
得到纠正的p值矩阵排列方法
作者(S)----------Author(s)----------
Yin Jin, Hesen Peng, Lei Wang, Raffaele Fronza, Yuanhua Liu and Christine Nardini
参见----------See Also----------
gene.trait.similarity
gene.trait.similarity
举例----------Examples----------
data(tumors.mRNA)
data(tumors.miRNA)
exp<-tumors.mRNA
trait<-tumors.miRNA
gene.trait.pvalue(EXP=exp[1:10,],trait=trait[1:5,],measure="MI")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|