找回密码
 注册
查看: 239|回复: 0

R语言 SPIAssay包 SPIATest()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 15:16:20 | 显示全部楼层 |阅读模式
SPIATest(SPIAssay)
SPIATest()所属R语言包:SPIAssay

                                        Function to compute SPIA test
                                         函数来计算SPIA测试

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Function SPIATest computes SPIA distance and performs probabilistic test on a set of cell lines.
函数SPIATest计算的SPIA距离和执行概率测试的一组单元系。


用法----------Usage----------


SPIATest(x, row.names = TRUE, test.prob = TRUE,
         test.param = list(Pmm = 0.1, nsigma = 2, Pmm_nonM = 0.6, nsigma_nonM = 3, PercValidCall=0.9),
         verbose = FALSE)



参数----------Arguments----------

参数:x
a matrix with a column for each cell line and a row for each SNP
每种单元系的列和行的一个矩阵与每个SNP


参数:row.names
specify if the first column of x contains SNPs names/identificators
指定的x如果第一列包含单核苷酸多态性名称/ identificators的


参数:test.prob
specify if the function has to perform SPIA probabilistic test
指定的功能执行SPIA概率测试


参数:test.param
specify the parameters of the probabilistic test.<br> - Pmm: SNP probability of mismatch in a matching population<br> - nsigma: area limit for Pmm<br> - Pmm_nonM: SNP probability of mismach in a non matching population<br> - nsigma_nonM: area limit for Pmm_nonM<br> - PercValidCall: percentage of valid SNP calls to consider the test valid<br>
指定的参数的概率试验。参考 -  PMM:SNP错配的概率在一个匹配人口<br>物理化学学报 -  nsigma:区域限制为PMM参考 -  Pmm_nonM:SNP概率mismach在非匹配人口<br>物理化学学报 -  nsigma_nonM:面积限制为Pmm_nonM参考 -  PercValidCall:有效的SNP比例要求,考虑到测试的有效<BR>


参数:verbose
print verbose information
打印详细信息


值----------Value----------

<table summary="R valueblock"> <tr valign="top"><td>SPIAresult</td> <td> a matric with a line for each cell line and with columns with the informationss about distances In particular, each row of SPIAresult has 7 columns:<br> 1. SPIA distance  <br> 2. number of valid calls <br> 3. number of total calls <br> 4. number of calls where one of the two SPNs are not available <br> 5. number of calls where both SNPs are not available <br> 6. number of calls where SNP change from AA, BB to AB or from AB to AA, BB <br> 7. number of calls where SNP change from AA to BB or from BB to AA  <br></td></tr> <tr valign="top"><td>parameters</td> <td> the parameters used by the test (test.param)</td></tr> <tr valign="top"><td>input.param</td> <td> the number of samples (N_samples), the number of SNPs (N_SNPs), and if the probabilistic test has been done (test.prob)</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> SPIAresult</ TD> <td>一个行每种单元系和与列的informationss左右的距离基质在特别地,每个排SPIAresult有7列如下:<br> 1。上海浦东机场距离参考。的的有效调用<BR> 3号。数量的总通话<BR> 4。其中之一,两个SPN的不提供参考5的呼叫的数量。数调用两个单核苷酸多态性是不是可以参考6。数量呼叫SNP从AA,BB,AB或AB AA,BB参考7。通话数量的SNP变化,从AA到BB或BB AA参考</ TD> </ TR> <tr valign="top"> <TD> parameters</ TD> <TD>的使用测试(test.param)</ TD> </ TR> <tr valign="top"> <TD>input.param </ TD> <TD>的数量的样品(N_samples),参数数量的单核苷酸多态性(N_SNPs),如果已经完成的概率试验(test.prob)</ TD> </ TR> </表>


(作者)----------Author(s)----------


Francesca Demichelis &lt;demichelis@science.unitn.it&gt;, Davide Prandi &lt;prandi@science.unitn.it&gt;



实例----------Examples----------



library(SPIAssay)

# An example of genotype calls with:[一个例子基因型的调用方式:]
# - four cell lines[ - 四个单元系]
# - for each cell line five SNP calls[ - 每一个单元系5个SNP要求]
GenotypeCalls <- rbind(
c("SNP1", "AA", "AA", "AB", "AB"),
c("SNP2", "NoCall", "AA", "AB", "AB"),
c("SNP3", "AB", "AB", "AA" , "AB"),
c("SNP4", "BB", "BB", "BB", "BB"),
c("SNP5", "AB", "BB", "AA", "AA"))
colnames(GenotypeCalls) <- c("SNP_ID","CellLine1","CellLine2","CellLine3","CellLine4")

# Encode the data into SPIA format.[到SPIA的格式,对数据进行编码。]
# SPIA uses 0 for AA, 1 for BB, 2 for AB, and NA for NoCall[SPIA使用0为AA,BB,AB,NA NoCall]
# therefore, GenotypeCalls has to be encoded by meand of[因此,要被编码GenotypeCalls由劲歌]
# toSPIAData[toSPIAData]
encoding <- c("AA","BB","AB","NoCall")
SPIAGenotypeCalls <- toSPIAData(GenotypeCalls,encoding)

# Perform SPIA analysis[执行SPIA分析]
SPIAanalysis <- SPIATest(SPIAGenotypeCalls)
# This analysis give an error because there are not enough SNPs[这种分析给出一个错误,因为没有足够的单核苷酸多态性]

# Perform SPIA analysis with parameters SPIAParam to reduce the 'similar' region[执行SPIA分析与参数SPIAParam的,以减少“类似”的区域]
SPIAParam <- list(Pmm = 0.1, nsigma = 1, Pmm_nonM = 0.6, nsigma_nonM = 1, PercValidCall=0.7)
SPIAanalysis <- SPIATest(SPIAGenotypeCalls, row.names = TRUE, test.prob = TRUE, SPIAParam)


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-18 21:33 , Processed in 0.027797 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表