sbf(SpherWave)
sbf()所属R语言包:SpherWave
Extrapolation with Multi-sale SBF's
外推多出售SBF
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function performs extrapolation with multi-sale SBF's.
这个函数执行多出售SBF的外推。
用法----------Usage----------
sbf(obs, latlon, netlab, eta, method, approx=FALSE,
grid.size=c(50, 100), lambda=NULL, p0=0, latlim=NULL,
lonlim=NULL)
参数----------Arguments----------
参数:obs
observations
观察
参数:latlon
grid points of observation sites in degree. Latitude is the angular distance in degrees of a point north or south of the Equator. North/South are represented by +/- sign. Longitude is the angular distance in degrees of a point east or west of the Prime (Greenwich) Meridian. East/West are represented by +/- sign.
度观测点的网格点。程度的一个点北赤道以南的纬度的角距离。北/南为代表的+ / - 符号。经度点向东或向西首要(格林尼治)子午线度的角距离。东/西为代表的+ / - 符号。
参数:netlab
vector of labels representing sub-networks
向量的代表子网络的标签
参数:eta
bandwidth parameters for Poisson kernel
泊松核的带宽参数
参数:method
extrapolation methods, ""ls"" or ""pls""
外推法“,”LS“”或“”PLS“
参数:approx
if TRUE, approximation is used.
如果为TRUE,使用近似。
参数:grid.size
grid size (latitude, longitude) of extrapolation site
外推网站的网格尺寸(经度,纬度)
参数:lambda
smoothing parameter for penalized least squares method
平滑参数补偿最小二乘法
参数:p0
specifies starting level for extrapolation. Among resolution levels 1, \ldots, L, resolution levels p0+1, \ldots, L will be included for extrapolation.
指定的外推起始水平。在分辨率级别1, \ldots, L,分辨率级别p0+1, \ldots, L将被纳入外推。
参数:latlim
range of latitudes in degree
度的纬度范围
参数:lonlim
range of longitudes in degree
度的经度范围
Details
详细信息----------Details----------
This function performs extrapolation with multi-sale SBF's.
这个函数执行多出售SBF的外推。
值----------Value----------
An object of class "sbf". This object is a list with the following components. <table summary="R valueblock"> <tr valign="top"><td>obs</td> <td> observations</td></tr> <tr valign="top"><td>latlon</td> <td> grid points of observation sites in degree</td></tr> <tr valign="top"><td>netlab</td> <td> vector of labels representing sub-networks</td></tr> <tr valign="top"><td>eta</td> <td> bandwidth parameters for Poisson kernel</td></tr> <tr valign="top"><td>method</td> <td> extrapolation methods, ""ls"" or ""pls""</td></tr> <tr valign="top"><td>approx</td> <td> if TRUE, approximation is used.</td></tr> <tr valign="top"><td>grid.size</td> <td> grid size (latitude, longitude) of extrapolation site</td></tr> <tr valign="top"><td>lambda</td> <td> smoothing parameter for penalized least squares method</td></tr> <tr valign="top"><td>p0</td> <td> starting level for extrapolation. Resolution levels p0+1, \ldots, L is used for extrapolation.</td></tr> <tr valign="top"><td>gridlon</td> <td> longitudes of extrapolation sites in degree</td></tr> <tr valign="top"><td>gridlat</td> <td> latitudes of extrapolation sites in degree</td></tr> <tr valign="top"><td>nlevels</td> <td> the number of multi-resolution levels</td></tr> <tr valign="top"><td>coeff</td> <td> interpolation coefficients</td></tr> <tr valign="top"><td>field</td> <td> extrapolation on grid.size</td></tr> <tr valign="top"><td>density</td> <td> density on observation's locations</td></tr> <tr valign="top"><td>latlim</td> <td> range of latitudes in degree</td></tr> <tr valign="top"><td>lonlim</td> <td> range of longitudes in degree</td></tr> </table>
对象类的SBF。此对象是一个具有下列组件列表。 <table summary="R valueblock"> <tr valign="top"> <TD> obs</ TD> <TD>的意见</ TD> </ TR> <tr valign="top"> < latlon TD> </ TD> <TD>网格点的观测点度</ TD> </ TR> <tr valign="top"> <TD> netlab</ TD> < TD>矢量表示子网络的标签</ TD> </ TR> <tr valign="top"> <TD>eta </ TD> <TD>带宽参数Poisson核</ TD> < / TR> <tr valign="top"> <TD> method</ TD> <TD>外推法“,”LS“或”PLS“</ TD> </ TR> <tr valign="top"> <TD> approx </ TD> <TD>如果为TRUE,使用近似。</ TD> </ TR> <tr valign="top"> <TD >grid.size</ TD> <TD>网格尺寸(纬度,经度)外推网站</ TD> </ TR> <tr valign="top"> <TD>lambda</ TD > <TD>平滑参数补偿最小二乘法</ TD> </ TR> <tr valign="top"> <TD> p0 </ TD> <TD>开始外推。分辨率级别p0+1, \ldots, L使用外推。</ TD> </ TR> <tr valign="top"> <TD>gridlon </ TD> <TD>东经度的外推网站< / TD> </ TR> <tr valign="top"> <TD> gridlat </ TD> <TD>纬度程度的外推网站</ TD> </ TR> <TR VALIGN =“顶部“> <TD> nlevels </ TD> <TD>数多分辨率水平</ TD> </ TR> <tr valign="top"> <TD>coeff</ TD> <TD>插值系数</ TD> </ TR> <tr valign="top"> <TD> field </ TD> <TD>外推法grid.size </ TD> </ TR > <tr valign="top"> <TD> density </ TD> <TD>密度观察的位置</ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD>范围内的纬度度</ TD> </ TR> <tr valign="top"> <TD> latlim </ TD> <TD>范围的经度度</ TD> </ TR> </ TABLE>
参考文献----------References----------
Oh, H-S. (1999) Spherical wavelets and their statistical analysis with applications to meteorological data. Ph.D. Thesis, Department of Statistics, Texas A\&M University, College Station.
Li, T-H. (1999) Multiscale representation and analysis of spherical data by spherical wavelets. SIAM Journal on Scientific Computing, 21, 924–953.
Oh, H-S. and Li, T-H. (2004) Estimation of global temperature fields from scattered observations by a spherical-wavelet-based spatially adaptive method. Journal of the Royal Statistical Society Ser. B, 66, 221–238.
参见----------See Also----------
swd, swthresh, swr.
swd,swthresh,swr。
实例----------Examples----------
### Observations of year 1967[##1967年的观察]
#data(temperature)[数据(温度)]
#names(temperature)[名称(温度)]
# Temperatures on 939 weather stations of year 1967 [1967年的939个气象站的温度对]
#temp67 <- temperature$obs[temperature$year == 1967] [temp67 < - 温度美元OBS [温度年== 1967]]
# Locations of 939 weather stations [939个气象站的位置]
#latlon <- temperature$latlon[temperature$year == 1967, ][温度latlon < - $ latlon [温度年= 1967年]]
### Network design by BUD[##网络设计BUD]
#data(netlab)[数据(NETLAB)]
### Bandwidth for Poisson kernel[##泊松核的带宽]
#eta <- c(0.961, 0.923, 0.852, 0.723, 0.506)[ETA - C(0.961,0.923,0.852,0.723,0.506)]
### SBF representation of the observations by pls[##的SBF表示,观察PLS]
#out.pls <- sbf(obs=temp67, latlon=latlon, netlab=netlab, eta=eta, [SBF(OBS = temp67,latlon latlon,NETLAB = NETLAB,η= ETA,out.pls < - ]
# method="pls", grid.size=c(50, 100), lambda=0.89)[方法=“PLS”,grid.size = C(50,100),λ= 0.89)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|