spe(spe)
spe()所属R语言包:spe
Implements the stochastic proximity embedding algorithm
实现随机接近嵌入算法
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Embeds an N dimensional dataset in M dimensions, such that distances (or similarities) in the original N dimensions are maintained (as close as possible) in the final M dimensions
在M维嵌入了一个N维的数据集,这样,在原始的N维的距离(或相似)保持(尽可能接近)在最终的M维
用法----------Usage----------
spe( coord, rcutpercent = 1, maxdist = 0,
nobs = 0, ndim = 0, edim,
lambda0 = 2.0, lambda1 = 0.01,
nstep = 1e6, ncycle = 100,
evalstress=FALSE, sampledist=TRUE, samplesize = 1e6)
参数----------Arguments----------
参数:coord
This should be a matrix with number of rows equal to the number of observations and number of columns equal to the input dimension. A data.frame may also be supplied and it will be converted to a matrix (so all names will be lost)
这应该是一个矩阵与数的观测值和输入维数等于列数等于行数。也可以提供,它会被转换成一个矩阵(因此,所有的名称将会丢失数据框)
参数:rcutpercent
This is the percentage of the maximum distance (as determined by probability sampling) that will be used as the neighborhood radius. Setting rcutpercent to a value greater than 1 effectively sets it to infinity.
这是,将被用作周边的半径的最大距离(所确定的概率抽样)的百分比。将rcutpercent设置到一个大于1的值,有效地将其设置为无穷大。
参数:maxdist
If you have alread calculated a mxaimum distance then you can supply it and probability sampling will not be carried out to obtain a maximum distance. The default is to carry out sampling. By setting maxdist to a non zero value sampling will not be carried out (even if sampledist=TRUE)
如果你已经alread计算一个mxaimum的距离,然后你可以提供它并不能进行概率抽样,以获得最大的距离。默认情况下是进行取样。通过设置maxdist到一个非零值采样将不能进行(即使sampledist = TRUE)
参数:nobs
The number of observations. If it is not specified nobs will be taken as nrow(coord)
的若干意见。如果是未指定诺布斯将被视为NROW(经纬度)
参数:ndim
The number of input dimensions. If not specified it will be taken as ncol(coord)
输入尺寸的数量。如果没有指定,将被视为NCOL(经纬度)
参数:edim
The number of dimensions to embed in
的维数,以嵌入
参数:lambda0
The starting value of the learning parameter
学习参数的初始值
参数:lambda1
The ending value of the learning parameter
结束值的学习参数
参数:nstep
The number of refinement steps
细化步骤的数量
参数:ncycle
The number of cycles to carry out refinement for
的周期数进行细化为
参数:evalstress
If TRUE the function will evaluate the Sammon stress on the final embedding
如果为true,函数将计算扩展,且优于塞曼压力的最终嵌入
参数:sampledist
If TRUE an approximation to the maximum distance in the input dimensions will be obtained via probability sampling
如果为TRUE在输入尺寸的最大距离的近似值,将通过以下方式获得概率抽样
参数:samplesize
The number of iterations for probability sampling. For a dataset of 6070 observations there will be 6070x6069/2 pairwise distances. The default value gives a close approximation and runs fast. If you want a bettr approximation 1e7 is a good value. YMMV
迭代概率抽样的数量。对于6070的观测数据集会有6070x6069 / 2成对距离。从预设值非常接近,运行速度快。如果,你想bettr近似1E7是一个很好的价值。 YMMV
Details
详细信息----------Details----------
Efficient determination of rcut is yet to be implemented (using the connected component method). As a result you will have to determine a value of rcutpercent by trail and error. The pivot SPE method (J. Mol. Graph. Model., 2003, 22, 133-140) is not yet implemented
RCUT尚未实施(使用连接的组件的方法)的有效测定。因此,你必须确定一个值rcutpercent的线索和错误。尚未实现枢轴的SPE的方法(J.-走势。型号。,2003,22,133-140)
值----------Value----------
If evalstress is TRUE it will be a list with two components named x and stress. x is the matrix of the final embedding and stress is the final stress
如果是TRUE evalstress,这将是一个列表命名为x和压力两部分组成。 x是最终的嵌入和应力的矩阵是最后的应力
(作者)----------Author(s)----------
Rajarshi Guha <a href="mailto:rajarshi@presidency.com">rajarshi@presidency.com</a>
参考文献----------References----------
Stochastic Proximity Embedding, J. Comput. Chem., 2003, 24, 1215-1221 A Modified Rule for Stochastic Proximity Embedding, J. Mol. Graph. Model., 2003, 22, 133-140 A Geodesic Framework for Analyzing Molecular Similarities, J. Chem. Inf. Comput. Sci., 2003, 43, 475-484
参见----------See Also----------
eval.stress, sample.max.distance
eval.stress,sample.max.distance
实例----------Examples----------
## load the phone dataset[#加载手机的数据集]
data(phone)
## run SPE, embed$stress should be 0 or very close to it[#运行SPE,嵌入压力应为0或非常接近]
## You can plot the embedding using the scatterplot3d package[#您可以绘制嵌入使用scatterplot3d包]
## (This will take a few minutes to run)[#(这将需要几分钟的时间来运行)]
embed <- spe(phone, edim=3, evalstress=TRUE)
## evaluate the Sammon stress[评估的扩展,且优于塞曼压力]
stress <- eval.stress(embed$x, phone)
## embed the Swiss Roll dataset in 2D[#嵌入的瑞士卷中的数据集的二维]
data(swissroll)
embed <- spe(swissroll, edim=2, evalstress=TRUE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|