找回密码
 注册
查看: 516|回复: 0

R语言 SPECIES包 unpmle()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 14:49:25 | 显示全部楼层 |阅读模式
unpmle(SPECIES)
unpmle()所属R语言包:SPECIES

                                        Unconditional NPML estimator for the SPECIES number
                                         无条件NPML估计的物种数

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function calculate the unconditional NPML estimator of the species number by Norris and Pollock 1996, 1998. This estimator was obtained from the full likelihood based on a Poisson mixture model. The confidence interval is  calculated based on a bootstrap procedure.
这个函数计算的无条件NPML诺里斯和波洛克1996年,1998年的物种数估计。这估计是从充分的可能性,基于上一个泊松混合物模型获得。置信区间的计算自举程序。


用法----------Usage----------


unpmle(n,t=15,C=0,method="W-L",b=200,conf=.95,seed=NULL,dis=1)



参数----------Arguments----------

参数:n
a matrix or a numerical data frame of two columns. It is also called the “frequency of frequencies” data in literature. The first column is the frequency j=1, 2…; and the second column is n_j, the  number of species  observed with j individuals in the sample.   
两列的矩阵或数值数据框。它也被称为“频率”在文献中的数据的频率。第一列是频率j=1, 2…;,第二列是n_j,j样品中的个人观察到的物种的数量。


参数:t
a positive integer. t specifies the cutoff value to define the relatively less abundant species to be used in estimation.  The default value for t=15. The estimator is fairly insensitive to the choice of t. The recommendation is to use t ≥ 10.
一个正整数。 t指定的截止值,以定义要用于估计的相对较少的丰富的物种。默认值T = 15。该估计是相当不敏感的选择t。的建议使用t ≥ 10。


参数:C
integer either 0 or 1. It specifies whether bootstrap confidence interval should be calculated. “C=1” for YES and “C=0” for NO.The default of C is set as 0.
整数0或1。它指定是否应计算自举置信区间。 “C= 1”为YES“C= 0”默认C NO.The被设置为0。


参数:method
string either “N-P” or “W-L”(default). If method=“N-P”, unconditional NPMLE will be used using an algorithm by  Bonhing and Schon (2005).  Sometimes this method can be extremely slow. Alternatively one can use method “W-L”, an approximate method (but with high precision and much faster) by Wang and Lindsay 2005.
字符串为“N-P”或“W-L”(默认值)。如果method=“N-P”,无条件NPMLE;将被用于使用一个算法Bonhing和舍恩(2005)。这种方法有时可能会非常慢。另一种方法是,可以使用方法“W-L”,一种近似方法(但具有高的精确度和更快)由王和Lindsay 2005。


参数:b
integer. b specifies the number of bootstrap samples for confidence interval. It is ignored if “C=0”.
整数。 b指定的bootstrap样本的置信区间。它被忽略,如果“C= 0”。


参数:conf
a positive number ≤ 1. conf specifies the confidence level for confidence interval. The default is 0.95.
一个正数≤ 1。 conf指定的置信水平下的置信区间。默认值是0.95。


参数:seed
a single value, interpreted as an integer. Seed for random number generation
一个单一的值,解释为一个整数。产生随机数的种子


参数:dis
0 or 1. 1 for on-screen display of the mixture output, and 0 for none.
0或1。 1的混合物输出的屏幕上的显示,并没有为0。


Details

详细信息----------Details----------

The computing is intensive if method=“N-P” is used particularly when extrapolation is large.  It may takes hours to compute the bootstrap confidence interval. If method=“W-L” is used, computing usually
如果method=“N-P”,特别是当采用外推法是大的计算是密集的。它可能需要几个小时来计算引导的置信区间。如果method=“W-L”,计算通常


值----------Value----------

The function unpmle returns a list of:  Nhat, CI (if &ldquo;C=1&rdquo;) <table summary="R valueblock"> <tr valign="top"><td>Nhat</td> <td> point estimate of N</td></tr> <tr valign="top"><td>CI</td> <td> bootstrap confidence interval.</td></tr> </table>
函数unpmle返回一个列表:Nhat,CI(如果“C= 1”)<table summary="R valueblock"> <TR VALIGN =“顶“<TD> Nhat </ TD> <TD>点估计N </ TD> </ TR> <tr valign="top"> <TD> CI </ TD> <TD>引导的置信区间。</ TD> </ TR> </ TABLE>


注意----------Note----------

The unconditional NPML estimator is unstable from either method='N-P' or method='W-L'. Extremely large estimates may occur.
无条件NPML估计是method='N-P'或method='W-L'是不稳定的。非常大的估计可能发生。


(作者)----------Author(s)----------


Ji-Ping Wang, Department of Statistics, Northwestern University



参考文献----------References----------

Norris, J. L. I., and Pollock, K. H. (1996), Nonparametric MLE Under Two Closed Capture-Recapture Models With Heterogeneity, Biometrics, 52,639-649.
Norris, J. L. I., and Pollock, K. H.(1998), Non-Parametric MLE for Poisson Species Abundance Models Allowing for Heterogeneity Between Species, Environmental and Ecological Statistics, 5, 391-402.
Bonhing, D. and Schon, D.,  (2005), Nonparametric maximum likelihood estimation of population size based on the counting distribution, Journal of the Royal Statistical Society, Series C: Applied Statistics, 54, 721-737.
Wang, J.-P. Z. and Lindsay, B. G. ,(2005), A penalized nonparametric maximum likelihood approach to species richness estimation. Journal of American Statistical Association, 2005,100(471):942-959

实例----------Examples----------


library(SPECIES)

##load data from the package, [#加载数据从包中]
## "butterfly" is the famous butterfly data by Fisher 1943.[“蝴蝶”是著名的蝴蝶费舍尔1943年的数据。]

data(butterfly)


##output estimate without confidence interval using cutoff t=15[#输出的置信区间估计没有使用截止吨= 15]
#unpmle(butterfly,t=15,C=0)[unpmle(蝶泳,T = 15,C = 0)]

##output estimate with confidence interval using cutoff t=15[#输出估计值的置信区间使用截止吨= 15]
#unpmle(butterfly,t=15,C=1,b=200)[unpmle,T = 15,C = 1,B = 200(蝴蝶)]


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-18 03:33 , Processed in 0.026549 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表