sp.correlogram(spdep)
sp.correlogram()所属R语言包:spdep
Spatial correlogram
空间相关图
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Spatial correlograms for Moran's I and the autocorrelation coefficient, with print and plot helper functions.
空间相关图莫兰我的自相关系数,打印和图的辅助功能。
用法----------Usage----------
sp.correlogram(neighbours, var, order = 1, method = "corr",
style = "W", randomisation = TRUE, zero.policy = NULL, spChk=NULL)
## S3 method for class 'spcor'
plot(x, main, ylab, ylim, ...)
## S3 method for class 'spcor'
print(x, p.adj.method="none", ...)
参数----------Arguments----------
参数:neighbours
an object of class nb
一个对象的类nb
参数:var
a numeric vector
一个数值向量
参数:order
maximum lag order
最大滞后阶数
参数:method
"corr" for correlation, "I" for Moran's I, "C" for Geary's C
“校正”的相关性,“I”莫兰我,“C”Geary的c
参数:style
style can take values W, B, C, and S
style可以采取的值W,B,C,和S的
参数:randomisation
variance of I or C calculated under the assumption of randomisation, if FALSE normality
方差计算的假设条件下的随机I或C,如果为FALSE正常
参数:zero.policy
default NULL, use global option value; if FALSE stop with error for any empty neighbour sets, if TRUE permit the weights list to be formed with zero-length weights vectors
默认为空,使用全局选项的值,如果为FALSE停止错误任何空的邻居集,如果真要形成与长度为零的权重向量允许的权重列表
参数:spChk
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()
应的数据向量空间对象的名称进行核对身份完整性,TRUE,否则返回FALSE,默认为空,使用get.spChkOption()
参数:x
an object from sp.correlogram() of class spcor
对象sp.correlogram()类spcor
参数:p.adj.method
correction method as in p.adjust
校正方法,如p.adjust
参数:main
an overall title for the plot
总冠军的图
参数:ylab
a title for the y axis
一个标题为y轴
参数:ylim
the y limits of the plot
在y的图的限制
参数:...
further arguments passed through
通过进一步的论据
Details
详细信息----------Details----------
The print function also calculates the standard deviates of Moran's I or Geary's C and a two-sided probability value, optionally using p.adjust to correct by the nymber of lags. The plot function plots a bar from the estimated Moran's I, or Geary's C value to +/- twice the square root of its variance (in previous releases only once, not twice).
打印功能还可以计算的Moran的I或Geary的c标准的偏离和一个双面的概率值,可以使用p.adjust纠正的nymber的滞后。估计莫兰我,或Geary的C值+ / - 两倍及其方差的平方根(在以前的版本中只有一次,而不是两次)的绘图功能绘制一个条形。
值----------Value----------
returns a list of class spcor:
返回一个列表类spcor:
参数:res
for "corr" a vector of values; for "I", a matrix of estimates of "I", expectations, and variances
为一个向量的值“校正”,“I”,“I”,期望矩阵的估计,和方差
参数:method
"I" or "corr"
“I”或“校正”
参数:cardnos
list of tables of neighbour cardinalities for the lag orders used
所采用的滞后阶数的邻居基数的表列表
参数:var
variable name
变量名
(作者)----------Author(s)----------
Roger Bivand, <a href="mailto:Roger.Bivand@nhh.no">Roger.Bivand@nhh.no</a>
参考文献----------References----------
118–122, Martin, R. L., Oeppen, J. E. 1975 The identification of regional forecasting models using space-time correlation functions, Transactions
参见----------See Also----------
nblag, moran, p.adjust
nblag,moran,p.adjust
实例----------Examples----------
example(nc.sids)
ft.SID74 <- sqrt(1000)*(sqrt(nc.sids$SID74/nc.sids$BIR74) +
sqrt((nc.sids$SID74+1)/nc.sids$BIR74))
tr.SIDS74 <- ft.SID74*sqrt(nc.sids$BIR74)
cspc <- sp.correlogram(ncCC89_nb, tr.SIDS74, order=8, method="corr",
zero.policy=TRUE)
print(cspc)
plot(cspc)
Ispc <- sp.correlogram(ncCC89_nb, tr.SIDS74, order=8, method="I",
zero.policy=TRUE)
print(Ispc)
print(Ispc, "bonferroni")
plot(Ispc)
Cspc <- sp.correlogram(ncCC89_nb, tr.SIDS74, order=8, method="C",
zero.policy=TRUE)
print(Cspc)
print(Cspc, "bonferroni")
plot(Cspc)
drop.no.neighs <- !(1:length(ncCC89_nb) %in% which(card(ncCC89_nb) == 0))
sub.ncCC89.nb <- subset(ncCC89_nb, drop.no.neighs)
plot(sp.correlogram(sub.ncCC89.nb, subset(tr.SIDS74, drop.no.neighs),
order=8, method="corr"))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|