找回密码
 注册
查看: 316|回复: 0

R语言 spcosa包 estimate-methods()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 14:29:06 | 显示全部楼层 |阅读模式
estimate-methods(spcosa)
estimate-methods()所属R语言包:spcosa

                                        Estimating Statistics
                                         估计统计

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Methods for estimating statistics given a spatial sample.
估计统计方法给出了空间采样。


方法----------Methods----------




statistic = "character", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame" estimates one of the following statistics, depending on the value of argument statistic: spatial mean, spatial variance, sampling variance, standard error, or scdf. See the examples below for details.
统计=“CompactStratification”=“字符”,分层,samplingPattern =“SamplingPatternRandomSamplingUnits”数据=“数据框”估计下面的统计数据之一,根据参数值的statistic:spatial mean,spatial variance,sampling variance,standard error或scdf。的详细信息,请参阅下面的例子。




statistic = "character", stratification = "CompactStratificationEqualArea", samplingPattern = "SamplingPatternRandomComposite", data = "data.frame" estimates one of the following statistics, depending on the value of argument statistic: spatial mean, sampling variance, or standard error.
统计=“字符”,分层=“CompactStratificationEqualArea”“,samplingPattern”SamplingPatternRandomComposite“数据=”数据框“估计,下面的统计数据,根据参数值的statistic:spatial mean,sampling variance或standard error。




statistic = "SamplingVariance", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame" estimates the sampling variance. See  "SamplingVariance" for more details.
统计=的“SamplingVariance”,分层=“CompactStratification”,samplingPattern =“SamplingPatternRandomSamplingUnits”数据=“数据框”估计抽样方差。见"SamplingVariance"更多详情。




statistic = "StandardError", stratification = "CompactStratificationEqualArea", samplingPattern = "SamplingPatternRandomComposite", data = "data.frame" estimates the standard error of the spatial mean. See  "StandardError" for more details.
统计=“的StandardError”,分层的“CompactStratificationEqualArea”,samplingPattern =“SamplingPatternRandomComposite”,数据“数据框”估计标准误差的空间平均。见"StandardError"更多详情。




statistic = "SpatialCumulativeDistributionFunction", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame" estimates the spatial cumulative distribution function (SCDF). See  "SamplingPatternRandomSamplingUnits" for more details.
统计=“SpatialCumulativeDistributionFunction”的,分层=“CompactStratification”,samplingPattern =“SamplingPatternRandomSamplingUnits”,数据=“数据框”估计的空间累积分布函数(新加坡民防部队)。见"SamplingPatternRandomSamplingUnits"更多详情。




statistic = "SpatialMean", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame" estimates the spatial mean. See  "SpatialMean" for more details.
统计=的“SpatialMean”,分层=“CompactStratification”,samplingPattern =“SamplingPatternRandomSamplingUnits”数据=“数据框”估计平均的空间。见"SpatialMean"更多详情。




statistic = "SpatialVariance", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame" estimates the spatial variance. See  "SpatialVariance" for more details.
统计=的“SpatialVariance”,分层=“CompactStratification”,samplingPattern =“SamplingPatternRandomSamplingUnits”数据=“数据框”估计的空间变异。见"SpatialVariance"更多详情。


实例----------Examples----------


## Not run: [#不运行:]

# read vector representation of the "Mijdrecht" area (the Netherlands)[读取向量表示的“迈德雷赫特区”(荷兰)]
shp <- readOGR(dsn = system.file("maps", package = "spcosa"), layer = "mijdrecht")

# stratify  into 30 strata (set nTry to a lower value to speed-up computation)[分层为30个地层(n请尝试一个较低的值,以加速计算)]
myStratification <- stratify(shp, nStrata = 30, nTry = 10, verbose = TRUE)

# random sampling of two sampling units per stratum[每个阶层的两个抽样单位的随机抽样]
mySamplingPattern <- spsample(myStratification, n = 2)

# plot sampling pattern[图采样模式]
plot(myStratification, mySamplingPattern)

# simulate data (in real world cases these data have to be obtained by field work)[模拟数据(在现实世界的情况下,这些数据必须通过以下方式获得野外工作)]
myData <- as(mySamplingPattern, "data.frame")
myData$observation <- rnorm(n = nrow(myData), mean = 10, sd = 1)

# design-based inference[设计的推理]
estimate("spatial mean", myStratification, mySamplingPattern, myData["observation"])
estimate("sampling variance", myStratification, mySamplingPattern, myData["observation"])
estimate("standard error", myStratification, mySamplingPattern, myData["observation"])
estimate("spatial variance", myStratification, mySamplingPattern, myData["observation"])
estimate("scdf", myStratification, mySamplingPattern, myData["observation"])


## End(Not run)[#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-17 18:56 , Processed in 0.022485 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表