找回密码
 注册
查看: 3896|回复: 0

R语言 spatstat包 spatstat-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 14:15:18 | 显示全部楼层 |阅读模式
spatstat-package(spatstat)
spatstat-package()所属R语言包:spatstat

                                        The Spatstat Package
                                         Spatstat包装

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This is a summary of the features of  spatstat, a package in R for the statistical analysis of spatial point patterns.
这是一个简易的功能spatstat,包R的统计分析的空间点模式。


Details

详细信息----------Details----------

spatstat is a package for the statistical analysis of spatial data. Currently, it deals mainly with the analysis of patterns of points in the plane.  The points may carry auxiliary data ("marks"), and the spatial region in which the points were recorded  may have arbitrary shape.
spatstat是空间数据的统计分析包。目前,它主要涉及的平面中的点的模式与分析。点可能携带的辅助数据(标记),和的空间的区域,在该区域中的点记录可以具有任意形状。

The package supports
该软件包支持

creation, manipulation and plotting of point patterns
创建,操作和绘制点模式

exploratory data analysis
探索性数据分析

simulation of point process models
点过程模型模拟

parametric model-fitting
参数模型拟合

hypothesis tests and model diagnostics
假设检验和模型选择和诊断

Apart from two-dimensional point patterns and point processes, spatstat also supports patterns of line segments in two dimensions, point patterns in three dimensions, and  multidimensional space-time point patterns. It also supports spatial tessellations and random sets.
除了从二维点模式和点过程,spatstat还支持线段的模式在两个方面,在三维空间中的点模式,多维空间的时间点模式。它也支持空间镶嵌和随机集。

The package can fit several types of point process models to a point pattern dataset:
包可以容纳多种类型的点过程模型阵列点数据集:

Poisson point process models (by Berman-Turner approximate maximum likelihood or by spatial logistic regression)
Poisson点过程模型(伯曼 - 特纳近似的最大似然或空间Logistic回归)

Gibbs/Markov point process models (by Baddeley-Turner approximate maximum pseudolikelihood or Huang-Ogata approximate maximum likelihood)
吉布斯/马尔可夫点的过程模型(巴德利 - 特纳的近似最大pseudolikelihood或黄绪方近似的最大似然)

Cox/cluster process models (by Waagepetersen's two-step fitting procedure and minimum contrast)
考克斯/聚类的过程模型(Waagepetersen的两个步骤的安装过程和最小对比度)

The models may include spatial trend, dependence on covariates, and complicated interpoint interactions. Models are specified by  a formula in the R language, and are fitted using a function analogous to lm and glm. Fitted models can be printed, plotted, predicted, simulated and so on.
的模型可能包括空间趋势,依赖协变量的,复杂的INTERPOINT相互作用的。模型中指定的formulaR语言,并配使用功能类似于lm和glm的。可以打印拟合模型,策划,预测,模拟等。


入门----------Getting Started----------

For a quick introduction to spatstat, see the package vignette Getting started with spatstat installed with spatstat. (To see this document online, start R, type help.start() to open the help browser, and navigate to Packages > spatstat > Vignettes).
对于一个快速介绍spatstat,包小插曲入门与spatstat安装了spatstat。 (看到这个在线文档,启动R,类型help.start()打开帮助浏览器,和导航Packages > spatstat > Vignettes)。

For a complete 2-day course on using spatstat, see the workshop notes by Baddeley (2010), available on the internet.
使用spatstat,看到车间笔记“由亚伦 - 巴德利(2010年),在互联网上提供一个完整的为期2天的课程。

Type demo(spatstat) for a demonstration  of the package's capabilities. Type demo(data) to see all the datasets available in the package.
输入demo(spatstat)的示范包的能力。输入demo(data)看包中的所有数据集。

For information about handling data in shapefiles, see the Vignette Handling shapefiles in the spatstat package installed with spatstat.
在shapefile中处理数据的信息,请参阅安装了spatstat在spatstat包的小插曲处理shapefile的。

To learn about spatial point process methods, see the short book by Diggle (2003) and the handbook Gelfand et al (2010).
要了解空间点的工艺方法,请参阅本小书Diggle(2003年)和手册Gelfand等人(2010)。


更新----------Updates----------

New versions of spatstat are produced about once a month. Users are advised to update their installation of spatstat regularly.
新版本的spatstat约每月一次。建议用户在spatstat定期更新其安装。

Type latest.news() to read the news documentation about changes to the current installed version of spatstat. Type news(package="spatstat") to read news documentation about all previous versions of the package.
类型latest.news()读的新闻文档改变当前安装的版本的spatstat。类型news(package="spatstat")看新闻文档所有以前版本的软件包。


功能和数据集----------FUNCTIONS AND DATASETS----------

Following is a summary of the main functions and datasets in the spatstat package. Alternatively an alphabetical list of all functions and datasets is available by typing library(help=spatstat).
以下是总结的主要功能和数据集spatstat包。或者按字母顺序排列的所有功能和数据集可通过键入library(help=spatstat)。

For further information on any of these, type help(name) where name is the name of the function or dataset.
任何欲了解更多信息,请键入help(name)name的功能或数据集的名称。


内容:----------CONTENTS:----------

Creating and manipulating data
创建和操纵数据

Exploratory Data Analysis
探索性数据分析

Model fitting (cluster models)
模型拟合(簇模型)

Model fitting (Poisson and Gibbs models)
型号配件(泊松及吉布斯模型)

Model fitting (spatial logistic regression)
模型拟合(logistic回归空间)

Simulation
模拟

Tests and diagnostics
测试和诊断


一,创建和操纵数据----------I. CREATING AND MANIPULATING DATA----------

Types of spatial data:
空间数据的类型:

The main types of spatial data supported by spatstat are:
空间数据支持的spatstat的主要类型是:

point pattern
点模式

window (spatial region)
窗口(空间区域)

pixel image
图像像素

line segment pattern
线段模式

tessellation
Tessellation(曲面细分)

three-dimensional point pattern
三维点模式

point pattern in any number of dimensions
点模式中任意维数的

To create a point pattern:
要创建点模式:

To simulate a random point pattern:
为了模拟一个随机点模式:

random thinning  
随机细化

To randomly change an existing point pattern:
随意改变现有的模式:

random shifting of points
随机移动的点

random thinning
随机细化

Standard point pattern datasets:
标准点模式的数据集:

Datasets in spatstat are lazy-loaded, so you can simply type the name of the dataset to use it; there is no need to type data(amacrine) etc.
的数据集spatstat是延迟加载的,所以你可以简单地键入名称使用的数据集;有没有需要键入data(amacrine)等

Type demo(data) to see a display of all the datasets installed with the package.
类型demo(data)看到显示的软件包安装的所有数据集。

Austin Hughes' rabbit amacrine cells
奥斯汀休斯的兔无长突单元

Upton-Fingleton sea anemones data
厄普顿芬格尔顿海葵数据

Harkness-Isham ant nests data
哈克尼斯艾沙姆蚂蚁巢数据

Tropical rainforest trees
热带雨林的树木

Waessle et al. cat retinal ganglia data
waessle等。猫视网膜神经节

Bramble Canes data
荆棘猎犬数据

Bronze Filter Section data
青铜过滤器部分数据

Crick-Ripley biological cells data
克里克里普利生物单元数据

Chicago street crimes
芝加哥街头犯罪

Chorley-Ribble cancer data
乔利里布尔癌症数据

Berman-Huntington copper deposits data
伯曼 - 亨廷顿铜矿的数据

Synthetic point pattern
合成点模式

Finnish Pines data
芬兰松树数据

Influenza virus proteins
流感病毒的蛋白质

Gorilla nest sites
大猩猩的巢址

Aherne's hamster tumour data
Aherne的仓鼠肿瘤

North Humberside childhood leukaemia data
北亨伯赛德郡儿童白血病数据

Japanese Pines data
日本松数据

Lansing Woods data
蓝星伍兹数据

Longleaf Pines data
长叶松树数据

Murchison gold deposits
默奇森金矿床

New Brunswick fires data
新不伦瑞克触发数据

Mark-Esler-Ripley trees data
马克 - 埃斯勒的里普利树数据

Osteocyte lacunae (3D, replicated)
骨陷窝(3D,复制)

Getis-Franklin ponderosa pine trees data
G系数富兰克林黄松松树数据

Strauss-Ripley redwood saplings data
斯特劳斯 - 里普利红杉树苗数据

Strauss redwood saplings data (full set)
红杉树苗数据施特劳斯(全套)

Data from Baddeley et al (2005)
巴德利等人(2005年数据)

Galaxies in an astronomical survey
星系在天文测量

Simulated point pattern (inhomogeneous, with interaction)
模拟点模式(分布不均匀,互动)

Spruce trees in Saxonia
云杉树中的Saxonia

Strand-Ripley swedish pines data
东街里普利瑞典松树数据

To manipulate a point pattern:
操作点模式:

pp[subset] or pp[subwindow]
pp[subset]或pp[subwindow]

compute convex hull
计算凸包

discretise coordinates
discretise坐标

See spatstat.options to control plotting behaviour.
见spatstat.options控制图行为。

To create a window:
要创建一个窗口:

An object of class "owin" describes a spatial region (a window of observation).
的一个目的的类"owin"描述的空间区域(观察窗口)。

Create a window object
创建一个窗口对象

owin(xlim, ylim) for rectangular window
owin(xlim, ylim)矩形窗口

owin(poly) for polygonal window
owin(poly)多边形窗口

owin(mask) for binary image window
owin(mask)二值图像窗口

make a square window
作出的正方形窗口

make a circular window
圆形窗口

compute convex hull of something
计算凸包的东西

To manipulate a window:
若要操作窗口:

plot a window.
绘制一个窗口。

plot(W)
plot(W)

rotate window  
旋转窗口

swap x and y coordinates  
交换x和y坐标

translate window  
翻译窗口

make several translated copies  
几个翻译件

Digital approximations:
数字近似:

convert window to pixel image
转换窗口像素的图像

convert window to pixel image
转换窗口像素的图像

find common pixel grid for windows
找到共同的像素网格窗口

See spatstat.options to control the approximation
spatstat.options控制的近似

Geometrical computations with windows:
与Windows的几何计算:

intersection of two windows
两个窗口的交点

union of two windows
工会的两个窗口

set subtraction of two windows
两个窗口设置减法

determine whether a point is inside a window
确定一个点是否在一个窗口

compute area
计算面积

compute perimeter length
计算周长

compute diameter
计算直径

find largest circle inside a window
最大的圆内的一个窗口,

find connected components of window
找到连接组件的窗口

compute areas of eroded windows
计算领域的侵蚀窗口

compute areas of dilated windows
计算领域扩张的窗口

compute distances from data points to window boundary
从数据点的距离计算窗口边界

compute distances from all pixels to window boundary
从所有像素的距离计算窗口边界

distance transform image
距离变换的图像

distance transform
距离变换

compute centroid (centre of mass) of window
计算的质心(质心)的窗口

determine whether a window is convex
确定是否一个窗口是凸

compute convex hull
计算凸包

pixel approximation of window
像素近似的窗口

polygonal approximation of window
多边形逼近的窗口

test whether window is a rectangle
测试是否窗口是一个矩形

test whether window is polygonal
测试是否是多边形窗口

test whether window is a mask
测试是否窗口是掩模

Pixel images: An object of class "im" represents a pixel image.  Such objects are returned by some of the functions in spatstat including Kmeasure, setcov and density.ppp.
像素的图像:一个对象类"im"代表一个像素的图像。这些对象被返回的一些功能spatstat包括Kmeasure,setcov和density.ppp。

create a pixel image
创建一个像素的图像

convert other data to a pixel image
其他数据转换到像素的图像

convert other data to a pixel image
其他数据转换到像素的图像

convert pixel image to matrix
像素的图像转换为矩阵

convert pixel image to data frame
像素的图像转换成数据框

plot a pixel image on screen as a digital image
在屏幕上绘制的像素的图像作为数字图像

draw contours of a pixel image
绘制像素图像的轮廓

draw perspective plot of a pixel image
绘制像素图像的透视图

create colour-valued pixel image
创建像素的图像颜色值

create colour-valued pixel image
创建像素的图像颜色值

extract a subset of a pixel image
一个像素的图像中提取的一个子集

replace a subset of a pixel image
更换的一个子集的像素的图像

apply vector shift to pixel image
应用向量转移到像素的图像

print very basic information about image X
打印非常基本的信息有关图像X

summary of image X
总结的形象X

histogram of image
图像的直方图

mean pixel value of image  
平均像素值的图像

integral of pixel values  
的像素值的整体

quantiles of image  
位数的图像

convert numeric image to factor image
因素图像转换成数字图像

test whether an object is a pixel image
测试是否一个对象是一个像素的图像

interpolate a pixel image
插值像素的图像

apply Gaussian blur to image
应用高斯模糊图像

find connected components
找到连接组件

make images compatible
相兼容的影像

find a common pixel grid for images
找到一个共同的图像的像素网格

evaluate any expression involving images
评估任何涉及图像的表达

rescale pixel values
重新定标像素值

set very small pixel values to zero
非常小的像素值设置为零

level set of an image
水平集的图像

region where an expression is true
区域表达式为真

spatial covariance function of image
空间协方差函数的图像

spatial convolution of images
空间的图像卷积

Line segment patterns
线段模式

An object of class "psp" represents a pattern of straight line segments.
一个对象的类"psp"的直线段的格局。

create a line segment pattern
创建线段模式

convert other data into a line segment pattern
其他数据转换成线段模式

determine whether a dataset has class "psp"
确定是否数据集类"psp",

plot a line segment pattern
绘制线段模式

print basic information
打印基本信息

print summary information
打印的摘要信息

extract a subset of a line segment pattern
提取线段图案的一个子集

extract marks of line segments
提取线段标记

assign new marks to line segments
指定新的标记线段

delete marks from line segments
删除线段标记

extract the endpoints of line segments
提取线段的端点的

compute the lengths of line segments
计算线段的长度

compute the orientation angles of line segments
计算线段的取向角度

combine several line segment patterns  
结合几个线段模式

swap x and y coordinates
交换x和y坐标

rotate a line segment pattern
旋转线段图案

shift a line segment pattern
移动线段模式

make several shifted copies
几个转变副本

apply an affine transformation
应用仿射变换

kernel smoothing of line segments
核平滑的线段

Tessellations
镶嵌

An object of class "tess" represents a tessellation.
一个对象的类"tess"的代表了Tessellation(曲面细分)。

create a tessellation
创建一个Tessellation(曲面细分)

create a tessellation of rectangles
创建一个矩形的Tessellation(曲面细分)

convert other data to a tessellation
其他数据转换成一个Tessellation(曲面细分)

plot a tessellation
绘制一个Tessellation(曲面细分)

extract all the tiles of a tessellation
提取所有的瓷砖镶嵌

extract some tiles of a tessellation
提取一些瓷砖镶嵌

change some tiles of a tessellation
改变一些瓷砖镶嵌

intersect two tessellations
相交2镶嵌

or restrict a tessellation to a window
或限制镶嵌到一个窗口

subdivide a tessellation by a line
镶嵌细分行

compute Dirichlet-Voronoi tessellation of points
点计算的狄利克雷-的Voronoi Tessellation(曲面细分)

compute Delaunay triangulation of points
计算Delaunay三角网的点

Three-dimensional point patterns
三维点模式

An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box is represented by an object of class "box3".
一个对象的类"pp3"的一个三维点模式,在一个长方形的盒子。框表示一个对象类"box3"。

create a 3-D point pattern
创建一个3-D点模式

plot a 3-D point pattern
绘制3-D点模式

extract coordinates
提取坐标

extract coordinates
提取坐标

name of unit of length
长度单位的名称

count the number of points  
数一数点

generate uniform random points in 3-D
在3-D生成均匀分布的随机点

generate Poisson random points in 3-D
生成的Poisson随机点在3-D

create a 3-D rectangular box
创建一个3-D的矩形框

convert data to 3-D rectangular box
将数据转换为3-D矩形框

name of unit of length
长度单位的名称

diameter of box
直径框

volume of box
箱量

shortest side of box
最短的侧框

Multi-dimensional space-time point patterns
多维空间 - 时间点图案

An object of class "ppx" represents a  point pattern in multi-dimensional space and/or time.
一种的类"ppx"的对象表示在多维空间和/或时间的点图案。

create a multidimensional space-time point pattern
创建一个多维空间的时间点模式

extract coordinates
提取坐标

extract coordinates
提取坐标

name of unit of length
长度单位的名称

count the number of points  
数一数点

generate uniform random points
产生均匀分布的随机点

generate Poisson random points
产生Poisson随机点

define multidimensional box  
定义多维箱

diameter of box
直径框

volume of box
箱量

shortest side of box
最短的侧框

Point patterns on a linear network
线性网络上的点模式

An object of class "linnet" represents a linear network (for example, a road network).
一种的类"linnet"的对象表示直链的网络(例如,一个道路网络)。

create a linear network
建立一个线性网络

interactively join vertices in network
以交互方式连接在网络中的顶点

simple example of network
简单的例子,网络

disc in a linear network
线性网络的光盘中

An object of class "lpp" represents a  point pattern on a linear network (for example, road accidents on a road network).
一个对象的类"lpp"的点模式的线性网络(例如,道路交通事故的道路上网络)。

create a point pattern on a linear network
创建一个线性网络上的一个点模式

methods for lpp objects
为lpp对象的方法

simulate Poisson points on linear network
线性网络的模拟泊松点

simulate random points on a linear network
在一个线性网络模拟随机点

Chicago street crime data
芝加哥街头犯罪数据

Hyperframes
特超帧

A hyperframe is like a data frame, except that the entries may be objects of any kind.
超帧是这样一个数据框,除了条目可能是任何类型的对象。

create a hyperframe
创建一个超帧

convert data to hyperframe
将数据转换为超帧

plot hyperframe
图超帧

combine hyperframes by columns
结合特超帧列

combine hyperframes by rows
结合特超帧的行

Layered objects
分层对象

A layered object represents data that should be plotted in successive layers, for example, a background and a foreground.
一个分层的对象表示,应在连续的层绘制的数据,例如,一个背景和前景。

create layered object
创建分层对象


II。探索性数据分析----------II. EXPLORATORY DATA ANALYSIS----------

Inspection of data:
检查的数据:

Classical exploratory tools:
古典的探索工具:

Clark and Evans aggregation index
克拉克和Evans聚集指数

Fry plot
弗莱图

Modern exploratory tools:
现代探索工具:

Byers-Raftery feature detection  
拜尔斯的的拉夫特里功能检测

Choi-Hall data sharpening
财厅的数据锐化

Summary statistics for a point pattern:
阵列点的汇总统计数据:

Quadrat counts
样方数

empty space function F
空空间功能F

nearest neighbour distribution function G
最近的邻居分布函数G

J-function J = (1-G)/(1-F)
J功能J = (1-G)/(1-F)

Ripley's K-function
里普利K功能

Besag L-function
BesagL功能

Third order T-function
三阶T功能

all four functions F, G, J, K
所有四个功能F,G,J,K

pair correlation function
对相关函数

K for inhomogeneous point patterns
K不均匀的点模式

L for inhomogeneous point patterns
L不均匀的点模式

pair correlation for inhomogeneous patterns
对相关的非齐次模式

Getis-Franklin neighbourhood density function
G系数富兰克林附近的密度函数

neighbourhood K-function
附近K-函数

local pair correlation function
当地对相关功能

local K for inhomogeneous point patterns
本地K不均匀的点模式

local L for inhomogeneous point patterns
本地L不均匀的点模式

local pair correlation for inhomogeneous patterns
对相关的非齐次模式

fast K-function using FFT for large datasets
快速K功能使用大型数据集的FFT

reduced second moment measure
第二个瞬间措施减少

variances and confidence intervals
方差和置信区间

for a summary function
汇总函数

Related facilities:
相关配套设施:

plot a summary function
绘制汇总函数

apply smoothing to a summary function
适用于平滑汇总函数

nearest neighbour distances
最近邻距离

find nearest neighbours
找到最近的邻居

distances between all pairs of points
所有对点之间的距离

distances between points in two patterns
在两个模式中的点之间的距离

nearest neighbours between two point patterns
最近的邻居之间的两个点模式

distance from any location to nearest data point
从任何地点距离最近的数据点

distance map image
距离映射图像

distance map function
距离图功能

kernel smoothed density
内核平滑密度

spatial interpolation of marks  
空间插值的标记

kernel estimate of relative risk
核估计的相对危险度

data sharpening  
数据锐化

Summary statistics for a multitype point pattern: A multitype point pattern is represented by an object X of class "ppp" such that marks(X) is a factor.
汇总统计数据一个多类型的模式:多类型的点模式为代表的对象X类"ppp"marks(X)是一个因素。

kernel estimation of relative risk  
核估计的相对危险度

spatial scan test of elevated risk  
高风险的空间扫描测试

multitype I-function
多类型I功能

Summary statistics for a marked point pattern: A marked point pattern is represented by an object X of class "ppp" with a component X$marks. The entries in the vector X$marks may be numeric, complex, string or any other atomic type. For numeric marks, there are the following functions:
汇总统计数据的标记点的模式:一个明显的点模式为代表的对象X类"ppp"一个组成部分X$marks。 在矢量X$marks中的条目可以是数字的,复杂的,字符串或任何其他的原子类型。对于数字标记,有以下功能:

smoothed local average of marks
平滑当地平均水平的标志

smoothed local variance of marks
平滑局部方差的标记

mark correlation function
商标相关的功能

mark variogram
标志变异函数

mark correlation integral
标记关联积分

mark independence diagnostic E(r)
商标独立诊断E(r)

mark independence diagnostic V(r)
商标独立诊断V(r)

nearest neighbour mean index
最近邻平均指数

For marks of any type, there are the following:
对于任何类型的标记,有以下几种:

multitype nearest neighbour distribution
多类型最近邻分布

multitype K-function
多类型K功能

Alternatively use cut.ppp to convert a marked point pattern to a multitype point pattern.
或者使用cut.ppp转换成一个标记点模式,多类型点图案。

Programming tools:
编程工具:

Summary statistics for a point pattern on a linear network:
一个线性网络上的一个点模式的汇总统计数据:

These are for point patterns on a linear network (class lpp).
这些都为点模式的线性网络(类lpp)。

Related facilities:
相关配套设施:

shortest path distances  
最短路径距离

simulation envelopes  
模拟信封

simulate Poisson points on linear network
线性网络的模拟泊松点

It is also possible to fit point process models to lpp objects. See Section IV.
它也可以以适合点过程模型lpp对象的。第四节。

Summary statistics for a three-dimensional point pattern:
汇总统计数据的三维点模式:

These are for 3-dimensional point pattern objects (class pp3).
这些都为3维的模式对象(类pp3)。

empty space function F
空空间功能F

nearest neighbour function G
最近的邻居功能G

K-function
K功能

Related facilities:
相关配套设施:

simulation envelopes
模拟信封

nearest neighbour distances
最近邻距离

Computations for multi-dimensional point pattern:
多维点模式的计算方法:

These are for multi-dimensional space-time point pattern objects (class ppx).
这些都为多维空间的时间点模式对象(类ppx)的。

nearest neighbour distances
最近邻距离

Summary statistics for random sets:
随机集的摘要统计:

These work for point patterns (class ppp), line segment patterns (class psp) or windows (class owin).
这些工作点模式(类ppp),线段模式(类psp)或窗口(类owin)。

spherical contact distribution H
球面接触分布H

Foxall G-function
FoxallG功能


III。模型拟合(CLUSTER模型)----------III. MODEL FITTING (CLUSTER MODELS)----------

Cluster process models (with homogeneous or inhomogeneous intensity) and Cox processes can be fitted by the function kppm. Its result is an object of class "kppm". The fitted model can be printed, plotted, predicted, simulated and updated.
可以安装的功能kppm聚类的过程模型(均匀或不均匀强度)和Cox过程。其结果是一个对象的类"kppm"。可以打印的拟合模型,策划,预测,模拟和更新。

Fit model
拟合模型

Plot the fitted model
绘制拟合模型

Compute fitted intensity
计算合身的强度

Update the model
更新模型

Generate simulated realisations
生成模拟的实现

Variance-covariance matrix of coefficients
方差 - 协方差矩阵的系数

K function of fitted model
K函数的拟合模型

The theoretical models can also be simulated, for any choice of parameter values, using rThomas, rMatClust, rCauchy, rVarGamma, and rLGCP.
的理论模型,也可以是模拟的,可任一选择的参数值,使用rThomas,rMatClust,rCauchy,rVarGamma和rLGCP。

Lower-level fitting functions include:
低级别的拟合函数包括:

fit a log-Gaussian Cox process model
适合的log - 高斯考克斯过程模型

fit a log-Gaussian Cox process model
适合的log - 高斯考克斯过程模型

fit the Thomas process model
适合托马斯过程模型

fit the Thomas process model
适合托马斯过程模型

fit the Matern Cluster process model
适合的Matern的的聚类过程模型

fit the Matern Cluster process model
适合的Matern的的聚类过程模型

fit a Neyman-Scott Cauchy cluster process
适合奈曼 - 斯科特的柯西聚类过程

fit a Neyman-Scott Cauchy cluster process
适合奈曼 - 斯科特的柯西聚类过程

fit a Neyman-Scott Variance Gamma process
适应一的奈曼 - 斯科特差异的Gamma过程

fit a Neyman-Scott Variance Gamma process
适应一的奈曼 - 斯科特差异的Gamma过程


IV。型号配件(POISSON及Gibbs模组)----------IV. MODEL FITTING (POISSON AND GIBBS MODELS)----------

Types of models
模型的类型

Poisson point processes are the simplest models for point patterns. A Poisson model assumes that the points are stochastically independent. It may allow the points to have a non-uniform spatial density. The special case of a Poisson process with a uniform spatial density is often called Complete Spatial Randomness.
泊松点过程是最简单的模型为点模式。一个的泊松模型假设点是随机独立。它可能会允许的点有一个非均匀的空间密度。的特殊情况下具有均匀的空间密度的泊松过程通常被称为完整的空间随机性。

Poisson point processes are included in the more general class of Gibbs point process models. In a Gibbs model, there is interaction or dependence between points. Many different types of interaction can be specified.
泊松点过程的吉布斯点过程模型,在更一般的类。在Gibbs模型,是点与点之间的交互或依赖。许多不同类型的交互可以被指定。

For a detailed explanation of how to fit Poisson or Gibbs point process models to point pattern data using spatstat, see Baddeley and Turner (2005b) or Baddeley (2008).
如何适应泊松或吉布斯点过程模型,在使用spatstat,Baddeley和特纳(2005B),亚伦 - 巴德利(2008年)。点模式数据的详细说明

To fit a Poison or Gibbs point process model:
为了适应中毒或吉布斯点过程模型:

Model fitting in spatstat is performed mainly by the function ppm. Its result is an object of class "ppm".
主要的功能spatstatppm模型拟合。其结果是一个对象的类"ppm"。

Here are some examples, where X is a point pattern (class "ppp"):
下面是一些例子,X是一个点模式(类"ppp"):

model
模型

Complete Spatial Randomness
完整的空间随机性

Complete Spatial Randomness
完整的空间随机性

Poisson process with
泊松过程

intensity loglinear in x coordinate
强度的对数线性x坐标

Stationary Strauss process
固定施特劳斯过程

Strauss process with
施特劳斯过程

It is also possible to fit models that depend on other covariates.
它也有可能依赖于其他变量的适配机型。

Manipulating the fitted model:
操作拟合模型:

Plot the fitted model
绘制拟合模型

Compute the spatial trend and conditional intensity
计算的空间发展趋势和条件的强度

of the fitted point process model
的拟合点过程模型

Extract the fitted model coefficients
提取模型拟合系数

Extract the trend formula
提取的趋势公式

Compute fitted conditional intensity at quadrature points
计算装有条件的强度,在正交点

Compute point process residuals at quadrature points
正交分点计算过程残差

Update the fit
更新的契合

Variance-covariance matrix of estimates
方差 - 协方差矩阵的估计

Simulate from fitted model  
模拟拟合模型

Simulate from fitted model  
模拟拟合模型

Print basic information about a fitted model
打印一个合适的模型的基本信息

Summarise a fitted model
请概述一个合适的模型

Compute the fitted effect of one covariate
计算一个协变量的拟合效果

log-likelihood or log-pseudolikelihood
数似然或登录pseudolikelihood的的

Analysis of deviance
分析偏差

Extract data frame used to fit model  
数据框中提取用于拟合模型

Extract spatial data used to fit model  
提取空间数据来拟合模型

Identify variables in the model
确定模型中的变量

Interpoint interaction component of model
INTERPOINT交互组件模型

Extract fitted interpoint interaction
提取装INTERPOINT互动

Check the model is a valid point process
该模型是一个有效的点过程

For model selection, you can also use  the generic functions step, drop1  and AIC on fitted point process models.
模式选择,你也可以使用通用的功能step,drop1和AIC装点过程模型。

See spatstat.options to control plotting of fitted model.
见spatstat.options控制绘制的拟合模型。

To specify a point process model:
要指定一个点过程模型:

The first order “trend” of the model is determined by an R language formula. The formula specifies the form of the logarithm of the trend.
一阶“趋势”的模式是由R语言公式。该公式指定的对数的形式的趋势。

No trend (stationary)
无趋势(固定)

where x,y are Cartesian coordinates
x,y是直角坐标系

Log-cubic polynomial trend  
登录三次多项式趋势

The higher order (“interaction”) components are described by an object of class "interact". Such objects are created by:
高阶(“互动”)组件所描述的对象的类"interact"。这样的对象被创建:

the Poisson point process
Poisson点过程

Area-interaction process
区域互动的过程

multiscale Geyer process
多尺度Geyer的过程

Diggle-Gratton potential
Diggle  - 格拉顿势

Diggle-Gates-Stibbard potential
Diggle,的盖茨Stibbard潜在的

Fiksel pairwise interaction process
Fiksel对相互作用过程

Geyer's saturation process
盖尔的饱和过程

Hard core process
硬核过程

Lennard-Jones potential
Lennard-Jones势

multitype hard core process
多类型的硬核过程

multitype Strauss process
多类型施特劳斯过程

multitype Strauss/hard core process
多类型施特劳斯/硬核过程

Ord process, threshold potential
条例过程中,阈电位

Ord model, user-supplied potential
条例模型,用户提供的潜力

pairwise interaction, piecewise constant
对相互作用,逐段常

pairwise interaction, user-supplied potential
两两交互,用户提供的潜力

Saturated pair model, piecewise  constant potential
饱和对模型,分段恒定的电势

Saturated pair model, user-supplied potential
对模型饱和,用户提供的潜在

pairwise interaction, soft core potential
对相互作用,软核潜力

Strauss process
施特劳斯过程

Strauss/hard core point process
史特劳斯/硬核点过程

Finer control over model fitting:
更精确地控制模型拟合

A quadrature scheme is represented by an object of class "quad". To create a quadrature scheme, typically use quadscheme.
正交计划所代表的对象的类"quad"。要创建一个积分方案,通常使用quadscheme。

default quadrature scheme
默认情况下积分方案

using rectangular cells or Dirichlet cells
使用矩形单元或狄利克雷单元

quadrature scheme based on image pixels
基于图像像素的积分方案

To inspect a quadrature scheme:
要检查一个积分方案:

plot quadrature scheme Q
图积分方案Q

print basic information about quadrature scheme Q
打印基本信息积分方案Q

A quadrature scheme consists of data points, dummy points, and weights. To generate dummy points:
正交计划包含的数据点,虚拟点和重量。生成虚点:

default pattern of dummy points
默认模式的虚拟点

dummy points in a rectangular grid
虚设在矩形网格点

stratified random dummy pattern
分层随机的虚拟模式

radial pattern of dummy points  
哑点的放射状图案

To compute weights:
要计算权重:

quadrature weights by the grid-counting rule  
正交格计数的规则权重

Simulation and goodness-of-fit for fitted models:
模拟和善良的拟合模型适合:

simulate realisations of a fitted model
拟合模型的模拟实现

simulate realisations of a fitted model
拟合模型的模拟实现

Point process models on a linear network:
点过程模型的线性网络:

An object of class "lpp" represents a pattern of points on a linear network. Point process models can also be fitted to these objects. Currently only Poisson models can be fitted.
一个对象的类"lpp"的点线性网络的格局。点过程模型也可以被安装到这些对象。目前,只有泊松模型可以安装。

point process model on linear network
点过程模型的线性网络

analysis of deviance for
分析的偏差

point process model on linear network
点过程模型的线性网络

simulation envelopes for
模拟信封

point process model on linear network
点过程模型的线性网络

model prediction on linear network
线性网络模型预测

pixel image on linear network
线性网络上的像素的图像


五,(空间Logistic回归模型拟合)----------V. MODEL FITTING (SPATIAL LOGISTIC REGRESSION)----------

Logistic regression
Logistic回归分析

Pixel-based spatial logistic regression is an alternative technique for analysing spatial point patterns that is widely used in Geographical Information Systems. It is approximately equivalent to fitting a Poisson point process model.
基于像素的空间Logistic回归分析空间点模式,被广泛应用于GEO信息系统是一种替代技术。它是大约相当于拟合Poisson点过程模型。

In pixel-based logistic regression, the spatial domain is divided into small pixels, the presence or absence of a data point in each pixel is recorded, and logistic regression is used to model the presence/absence indicators as a function of any covariates.
在基于像素的Logistic回归,空间域被分成小的像素,每个像素中的数据点的存在或不存在记录,和Logistic回归是用来模拟作为任何协变量的函数的存在/不存在的指标。

Facilities for performing spatial logistic regression are provided in spatstat for comparison purposes.
执行空间logistic回归的设施中提供spatstat作比较。

Fitting a spatial logistic regression
logistic回归拟合空间

Spatial logistic regression is performed by the function slrm. Its result is an object of class "slrm". There are many methods for this class, including methods for print, fitted, predict, simulate, anova, coef, logLik, terms, update, formula and vcov.
空间的功能slrmlogistic回归。其结果是一个对象的类"slrm"。这个类的方法有很多,包括方法print,fitted,predict,simulate,anova,coef,<X >,logLik,terms,update和formula。

For example, if X is a point pattern (class "ppp"):
例如,如果X是一个点模式(类"ppp"):

model
模型

Complete Spatial Randomness
完整的空间随机性

Poisson process with
泊松过程

intensity loglinear in x coordinate
强度的对数线性x坐标

Poisson process with
泊松过程

Manipulating a fitted spatial logistic regression
操作合身的空间Logistic回归

Analysis of deviance
分析偏差

Extract fitted coefficients
提取拟合系数

Variance-covariance matrix of fitted coefficients
方差 - 协方差矩阵拟合系数

There are many other undocumented methods for this class, including methods for print, update, formula and terms. Stepwise model selection is possible using step or stepAIC.
还有许多其他未公开的这个类的方法,包括方法print,update,formula和terms。逐步模型的选择是可以使用step或stepAIC。


VI。模拟----------VI. SIMULATION----------

There are many ways to generate a random point pattern, line segment pattern, pixel image or tessellation in spatstat.
有许多方法来产生一个随机点图案,线段模式,像素的图像或镶嵌在spatstat。

Random point patterns:
随机点模式:

Resampling a point pattern:
重采样点模式:

block resampling
阻止重新取样

random shifting of (subsets of) points
随机移动的点(子集)

See also varblock for estimating the variance of a summary statistic by block resampling, and lohboot for another bootstrap technique.
也参看varblock用于由块重采样的摘要统计量估计的方差,和lohboot另一个自举技术。

Fitted point process models:
合身点过程模型:

If you have fitted a point process model to a point pattern dataset, the fitted model can be simulated.
如果你已经安装了一个点阵列点数据集的过程模型,拟合模型可以模拟。

Cluster process models  are fitted by the function kppm yielding an object of class "kppm". To generate one or more simulated realisations of this fitted model, use  simulate.kppm.
聚类的过程模型拟合的功能kppm得一个对象类"kppm"。要生成一个或多个模拟实现这个拟合模型,使用simulate.kppm。

Gibbs point process models  are fitted by the function ppm yielding an object of class "ppm". To generate a simulated realisation of this fitted model, use rmh. To generate one or more simulated realisations of the fitted model, use simulate.ppm.
吉布斯点过程模型拟合的功能ppm得一个对象类"ppm"。要生成一个模拟的实现这个拟合模型,使用rmh。要生成一个或多个拟合模型的模拟实现,使用simulate.ppm。

Other random patterns:
随机模式:

Simulation-based inference
基于仿真的推理


VII。测试和诊断----------VII. TESTS AND DIAGNOSTICS----------

Classical hypothesis tests:
古典假设检验:

Clark and Evans test
克拉克和埃文斯测试

Kolmogorov-Smirnov goodness-of-fit test
柯尔莫哥洛夫 - 斯米尔诺夫善良的拟合优度检验

Berman's goodness-of-fit tests
伯曼的善良的拟合检验

Cressie (1991)/Loosmore and Ford (2006) test
经验Cressie(1991)/ Loosmore和福特(2006)测试

Mean Absolute Deviation test
平均绝对偏差测试

spatial scan statistic/test
空间扫描统计/测试

Sensitivity diagnostics:
灵敏度诊断:

Classical measures of model sensitivity such as leverage and influence have been adapted to point process models.
点过程模型,模型的灵敏度,控制力,影响力已经被改编的古典措施。

Leverage for point process model
杠杆点过程模型

Influence for point process model
点过程模型的影响

Parameter influence
参数的影响

Residual diagnostics:
剩余诊断:

Residuals for a fitted point process model, and diagnostic plots based on the residuals, were introduced in Baddeley et al (2005) and Baddeley, Rubak and Moller (2011).  
残差的拟合点过程模型,并根据残差的诊断图,介绍了巴德利等人(2005)和巴德利,Rubak和Moller(2011)。

Type demo(diagnose) for a demonstration of the diagnostics features.
类型demo(diagnose)的诊断功能的演示。

diagnostic plots for spatial trend
空间趋势的诊断图

diagnostic Q-Q plot for interpoint interaction
诊断INTERPOINT互动Q-Q图

examples from Baddeley et al (2005)
作为巴德利等人(2005)

model compensator of K function
模式K功能补偿

model compensator of G function
模式G功能补偿

score residual of K function
得分残留K功能

score residual of G function
得分残留G功能

pseudoscore residual of summary function
pseudoscore残留的汇总函数

pseudoscore residual of empty space function
pseudoscore残留的空空间功能

pseudoscore residual of G function
pseudoscore残留G功能

Resampling and randomisation procedures
重采样和随机程序

You can build your own tests based on randomisation and resampling using the following capabilities:
你可以建立自己的测试的基础上随机化和重采样使用以下功能:

block resampling
阻止重新取样

random shifting of (subsets of) points
随机移动的点(子集)


VIII。文档----------VIII. DOCUMENTATION----------

The online manual entries are quite detailed and should be consulted first for information about a particular function.
在线手册条目非常详细,应首先查询有关特定功能的信息。

The paper by Baddeley and Turner (2005a) is a brief overview of the package.  Baddeley and Turner (2005b) is a more detailed explanation of how to fit point process models to data. Baddeley (2010) is a complete set of notes from a 2-day workshop on the use of spatstat.
巴德利和Turner(2005年)的论文的包是一个简短的概述。 Baddeley和特纳(2005B)是如何适应点过程模型的数据的一个更详细的解释。巴德利(2010年)是一套完整的票据为期2天的研讨会上spatstat使用。

Type citation("spatstat") to get these references.
输入citation("spatstat")得到这些引用。


牌照----------Licence----------

This library and its documentation are usable under the terms of the "GNU  General Public License", a copy of which is distributed with the package.
使用这个库和它的文档的副本,其中的“GNU通用公共许可证”的条件下,随产品打包发布。


致谢----------Acknowledgements----------

Kasper Klitgaard Berthelsen, Abdollah Jalilian, Marie-Colette van Lieshout, Ege Rubak,  Dominic Schuhmacher and Rasmus Waagepetersen made substantial contributions of code. Additional contributions by Ang Qi Wei, Sandro Azaele, Colin Beale, Ricardo Bernhardt, Brad Biggerstaff, Roger Bivand, Florent Bonneu, Julian Burgos, Simon Byers, Ya-Mei Chang, Jianbao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen, Jean-Francois Coeurjolly, Marcelino de la Cruz, Peter Dalgaard, Peter Diggle, Ian Dryden, Stephen Eglen, Neba Funwi-Gabga, Agnes Gault, Marc Genton, Pavel Grabarnik, C. Graf, Janet Franklin, Ute Hahn, Andrew Hardegen, Mandy Hering,  Martin Bogsted Hansen, Martin Hazelton, Juha Heikkinen, Kurt Hornik, Ross Ihaka, Aruna Jammalamadaka, Robert John-Chandran, Devin Johnson, Mike Kuhn, Jeff Laake, Tom Lawrence, Robert Lamb, Jonathan Lee, George Leser, Ben Madin, Robert Mark, Jorge Mateu Mahiques, Monia Mahling, Peter McCullagh, Ulf Mehlig, Sebastian Wastl Meyer, Mi Xiangcheng, Jesper Moller, Linda Stougaard Nielsen, Felipe Nunes, Jens Oehlschlaegel, Thierry Onkelinx, Evgeni Parilov, Jeff Picka, Sergiy Protsiv, Adrian Raftery, Matt Reiter, Tom Richardson, Brian Ripley, Barry Rowlingson, John Rudge, Farzaneh Safavimanesh, Aila Sarkka, Katja Schladitz, Bryan Scott, Vadim Shcherbakov, Shen Guochun, Ida-Maria Sintorn, Yong Song,  Malte Spiess, Mark Stevenson, Kaspar Stucki, Michael Sumner, P. Surovy, Ben Taylor, Berwin Turlach, Andrew van Burgel, Tobias Verbeke, Alexendre Villers, Hao Wang, H. Wendrock, Jan Wild, Selene Wong and Mike Zamboni.
卡斯帕Klitgaard Berthelsen,Abdollah Jalilian,玛丽 - 科莱特范·利斯豪特,EGE Rubak,多米尼克Schuhmacher和拉斯穆斯Waagepetersen作出了重大贡献的代码。昂戚薇,桑德罗Azaele,科林·比尔,里卡多·伯恩哈特,布拉德·比格斯塔夫,罗杰·Bivand,弗洛伦特Bonneu,朱利安·布尔戈斯,西蒙·拜尔斯,亚媚,陈煎包,伊戈尔Chernayavsky,YC的其他贡献展,Bjarke克里斯滕森,让 - 弗朗索瓦Coeurjolly,马塞利诺·克鲁斯,达尔加德彼得,彼得Diggle,伊恩·德莱顿,斯蒂芬Eglen,根羽Funwi-Gabga,艾格尼丝高尔特,马克Genton先生,帕维尔Grabarnik,C.格拉夫,珍妮特·富兰克林,UTE哈恩,安德鲁Hardegen,小敏赫林,Bogsted汉森马丁,马丁·黑泽尔顿,尤哈Heikkinen,库尔特·霍尔尼克,罗斯Ihaka,阿鲁娜Jammalamadaka,罗伯特·约翰·德兰,德文·约翰逊,迈克·库恩杰夫·Laake,汤姆·劳伦斯·罗伯特·兰姆,李宗盛,乔治LESER,豪尔赫·罗伯特·马克·本·梅丁,Mateu Mahiques,莫尼亚Mahling,彼得McCullagh,乌尔夫Mehlig,塞巴斯蒂安Wastl迈耶,米市相城区中,Jesper穆勒,琳达Stougaard尼尔森,菲利普·努内斯,延Oehlschlaegel,亨利ONKELINX,Parilov叶夫根尼,杰夫Picka,谢尔盖Protsiv,阿德里安·拉夫特里,马特·赖特,汤姆·理查森,布莱恩·里普利,巴里Rowlingson,约翰·拉奇,Farzaneh Safavimanesh,艾拉Sarkka,Schladitz卡佳,布莱恩 - 斯科特,瓦季姆·谢尔巴科夫,申过蝽,井田玛丽亚Sintorn,宋勇,马尔特Spiess,马克·史蒂文森,卡斯帕Stücki酒店,伯温Turlach,本·泰勒,迈克尔·萨姆纳,体育Surovy,安德鲁·范Burgel,托比亚斯·韦贝克,Alexendre维莱,王浩,H. Wendrock,日野黄,月之女神和迈克·赞博尼。


(作者)----------Author(s)----------



Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>




参考文献----------References----------

Analysing spatial point patterns in R. Workshop notes. Version 4.1. CSIRO online technical publication. URL: <code>www.csiro.au/resources/pf16h.html</code>
Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software 12:6, 1&ndash;42. URL: <code>www.jstatsoft.org</code>, ISSN: 1548-7660.
Modelling spatial point patterns in R. In: A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern Modelling, Lecture Notes in Statistics number 185. Pages 23&ndash;74. Springer-Verlag, New York, 2006.  ISBN: 0-387-28311-0.
Residual analysis for spatial point processes. Journal of the Royal Statistical Society, Series B 67, 617&ndash;666.
Score, pseudo-score and residual diagnostics for spatial point process models. Statistical Science 26, 613&ndash;646.
Statistical analysis of spatial point patterns, Second edition. Arnold.
Handbook of Spatial Statistics. CRC Press.
Improvements of the maximum pseudo-likelihood estimators in various spatial statistical models. Journal of Computational and Graphical Statistics 8, 510&ndash;530.
An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63 (2007) 252&ndash;258.
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-16 19:13 , Processed in 0.038627 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表