找回密码
 注册
查看: 422|回复: 0

R语言 spatstat包 rmhmodel.ppm()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 14:08:38 | 显示全部楼层 |阅读模式
rmhmodel.ppm(spatstat)
rmhmodel.ppm()所属R语言包:spatstat

                                        Interpret Fitted Model for Metropolis-Hastings Simulation.
                                         解释大都市黑斯廷斯的仿真模型拟合。

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Converts a fitted point process model into a format that can be used to simulate the model by the Metropolis-Hastings algorithm.
将一个装有点过程模型的格式,可以用来模拟模型的Metropolis-Hastings算法。


用法----------Usage----------


  ## S3 method for class 'ppm'
rmhmodel(model, win, ..., verbose=TRUE, project=TRUE,
                         control=rmhcontrol())



参数----------Arguments----------

参数:model
Fitted point process model (object of class "ppm").  
合身点过程模型(对象类"ppm"“)。


参数:win
Optional. Window in which the simulations should be generated.  
可选。窗口,在其中模拟应生成。


参数:...
Ignored.
忽略。


参数:verbose
Logical flag indicating whether to print progress reports while the model is being converted.  
逻辑标志,指示是否要打印的进度报告,同时被转换的模型。


参数:project
Logical flag indicating what to do if the fitted model does not correspond to a valid point process. See Details.
逻辑标志,指示该怎么做,如果合适的模型不符合一个有效的点过程。查看详细信息。


参数:control
Parameters determining the iterative behaviour of the simulation algorithm. Passed to rmhcontrol.  
参数确定的迭代算法的仿真行为。传递到rmhcontrol。


Details

详细信息----------Details----------

The generic function rmhmodel takes a description of a point process model in some format, and converts it into an object of class "rmhmodel" so that simulations of the model can be generated using the Metropolis-Hastings algorithm rmh.
通用功能rmhmodel某种格式的点过程模型的描述,并将其转换成一个类的对象"rmhmodel",使模拟的模型可以使用的Metropolis-Hastings算法生成rmh。

This function rmhmodel.ppm is the method for the class "ppm" of fitted point process models.
此功能rmhmodel.ppm类"ppm"装点过程模型的方法。

The argument model should be a fitted point process model (object of class "ppm") typically obtained from the model-fitting function ppm. This will be converted into an object of class "rmhmodel".
参数model应该是一个安装点过程模型(对象类"ppm"),通常从模型的拟合函数ppm。这将被转换成一个对象的类"rmhmodel"。

The optional argument win specifies the window in which the pattern is to be generated.  If specified, it must be in a form which can be coerced to an object of class owin by as.owin.
可选参数win指定要生成模式的窗口中。如果指定的话,它必须是可以强制转换为一个对象类owinas.owin的形式。

Not all fitted point process models obtained from ppm can be simulated. We have not yet implemented simulation code for the LennardJones and OrdThresh models.
并非所有的拟合点的过程模型获得ppm可以模拟。我们还没有实现仿真代码LennardJones和OrdThresh模型。

It is also possible that a fitted point process model obtained from ppm  may not correspond to a valid point process. For example a fitted model with the Strauss interpoint interaction may have any value of the interaction parameter gamma; however the Strauss  process is not well-defined for  gamma > 1 (Kelly and Ripley, 1976).
也有可能是一个装有点过程模型获得ppm可能不符合一个有效的点过程。例如,一个合适的模型StraussINTERPOINT互动可能没有任何价值的相互作用参数gamma但是施特劳斯的过程是不明确的,gamma > 1(凯利和Ripley,1976年) 。

The argument project determines what to do in such cases. If project=FALSE, a fatal error will occur. If project=TRUE, the fitted model parameters will be adjusted to the nearest values which do correspond to a valid point process. For example a Strauss process with gamma > 1 will be projected to a Strauss process with gamma = 1, equivalent to a Poisson process.
参数project在这种情况下,决定做什么。如果project=FALSE,一个致命的错误会发生。如果project=TRUE,拟合模型的参数将被调整至最接近的值对应一个有效的点过程。例如施特劳斯gamma > 1将被投影到施特劳斯过程gamma = 1,相当于一个泊松过程。


值----------Value----------

An object of class "rmhmodel", which is essentially a list of parameter values for the model.
类"rmhmodel",它的一个目的是基本上是一个为模型的参数值列表。

There is a print method for this class, which prints a sensible description of the model chosen.
有一个print这个类的方法,它会输出一个明智的描述所选择的模式。


(作者)----------Author(s)----------


Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>




参考文献----------References----------

Patterns (2nd ed.) Arnold, London.
Monte Carlo methods of inference for implicit statistical models. Journal of the Royal Statistical Society, series B 46, 193 &ndash; 212.
Likelihood Inference for Spatial Point Processes. Chapter 3 in  O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Computation, Chapman and Hall / CRC,  Monographs on Statistics and Applied Probability, number 80. Pages 79&ndash;140.
On Strauss's model for clustering. Biometrika 63, 357&ndash;360.

参见----------See Also----------

rmhmodel, rmhmodel.list, rmhmodel.default, rmh, rmhcontrol, rmhstart, ppm, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, LennardJones, MultiStrauss, MultiStraussHard, PairPiece, Poisson, Softcore, Strauss, StraussHard, Triplets
rmhmodel,rmhmodel.list,rmhmodel.default,rmh,rmhcontrol,rmhstart,ppm,AreaInter,BadGey,DiggleGatesStibbard,DiggleGratton,Fiksel,Geyer,Hardcore,LennardJones,MultiStrauss,MultiStraussHard ,PairPiece,Poisson,Softcore,Strauss,StraussHard,Triplets


实例----------Examples----------


  data(cells)
  fit1 <- ppm(cells, ~1, Strauss(0.07))
  mod1 <- rmhmodel(fit1)

  fit2 <- ppm(cells, ~x, Geyer(0.07, 2))
  mod2 <- rmhmodel(fit2)

  fit3 <- ppm(cells, ~x, Hardcore(0.07))
  mod3 <- rmhmodel(fit3)

  # Then rmh(mod1), etc[然后RMH(MOD1),等]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-16 17:36 , Processed in 0.025342 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表