找回密码
 注册
查看: 448|回复: 0

R语言 spatstat包 matclust.estpcf()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 13:46:09 | 显示全部楼层 |阅读模式
matclust.estpcf(spatstat)
matclust.estpcf()所属R语言包:spatstat

                                        Fit the Matern Cluster Point Process by Minimum Contrast Using Pair Correlation
                                         最低对比度对相关适合的Matern的簇生点过程

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Fits the Matern Cluster point process to a point pattern dataset by the Method of Minimum Contrast using the pair correlation function.
阵列点数据集的方法对相关功能使用的最小对比度适合的Matern的聚类点的过程。


用法----------Usage----------


matclust.estpcf(X, startpar=c(kappa=1,R=1), lambda=NULL,
            q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
            pcfargs=list())



参数----------Arguments----------

参数:X
Data to which the Matern Cluster model will be fitted. Either a point pattern or a summary statistic. See Details.  
数据,Matern聚类模式将被安装。无论是点模式或一个简要统计。查看详细信息。


参数:startpar
Vector of starting values for the parameters of the Matern Cluster process.  
的Matern聚类过程的参数的初始值的向量。


参数:lambda
Optional. An estimate of the intensity of the point process.  
可选。的点处理的强度的估计值。


参数:q,p
Optional. Exponents for the contrast criterion.  
可选。指数的对比标准。


参数:rmin, rmax
Optional. The interval of r values for the contrast criterion.  
可选。的间隔r的值的对比标准。


参数:...
Optional arguments passed to optim to control the optimisation algorithm. See Details.  
可选参数传递给optim控制的优化算法。查看详细信息。


参数:pcfargs
Optional list containing arguments passed to pcf.ppp to control the smoothing in the estimation of the pair correlation function.  
可选列表,其中包含的参数传递给pcf.ppp控制平滑在对相关函数的估计。


Details

详细信息----------Details----------

This algorithm fits the Matern Cluster point process model to a point pattern dataset by the Method of Minimum Contrast, using the pair correlation function.
该算法适合Matern的聚类点过程模型的方法的最低对比度阵列点数据集,对相关功能的使用。

The argument X can be either
参数X可以是




a point pattern: An object of class "ppp" representing a point pattern dataset.  The pair correlation function of the point pattern will be computed using pcf, and the method of minimum contrast will be applied to this.
点模式:一个对象类"ppp"的一个点模式的数据集。对相关函数的点格局将被计算使用pcf,和最小对比度的方法将被应用到这个。




a summary statistic: An object of class "fv" containing the values of a summary statistic, computed for a point pattern dataset. The summary statistic should be the pair correlation function, and this object should have been obtained by a call to pcf or one of its relatives.
一个简要统计:类的一个对象"fv"值的汇总统计,计算点模式数据集。摘要统计应该是对相关功能,这个对象应该已经获得通过调用pcf或它的一个亲戚。

The algorithm fits the Matern Cluster point process to X, by finding the parameters of the Matern Cluster model which give the closest match between the theoretical pair correlation function of the Matern Cluster process and the observed pair correlation function. For a more detailed explanation of the Method of Minimum Contrast, see mincontrast.
的算法适合Matern的聚类点过程X,找到的Matern聚类模式,给最接近的匹配理论对相关功能的Matern聚类过程和所观察到的对相关函数之间的参数的。最低对比度的方法对于更详细的说明,请参阅mincontrast。

The Matern Cluster point process is described in Moller and Waagepetersen (2003, p. 62). It is a cluster process formed by taking a  pattern of parent points, generated according to a Poisson process with intensity kappa, and around each parent point, generating a random number of offspring points, such that the number of offspring of each parent is a Poisson random variable with mean mu, and the locations of the offspring points of one parent are independent and uniformly distributed inside a circle of radius R centred on the parent point.
的Matern聚类点的过程中描述穆勒和Waagepetersen(2003年,第62页)。这是一个聚类过程中形成通过服用的图案的父点,根据泊松过程强度kappa产生,和围绕每个父点,产生一个随机数的后代点,使得每个后代的数目父母是泊松随机变量与平均mu,和父母一方的后代点的位置是独立的,并均匀地分布为半径的圆内R父点上居中。

The theoretical pair correlation function of the Matern Cluster process is
理论对相关功能的Matern聚类过程

where
哪里

for z <= 1, and h(z) = 0 for z > 1. The theoretical intensity of the Matern Cluster process is lambda=kappa* mu.
z <= 1,h(z) = 0z > 1。的理论强度的Matern聚类过程是lambda=kappa* mu。

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters kappa and R. Then the remaining parameter mu is inferred from the estimated intensity lambda.
在该算法中,最小对比度的方法是第一次使用的参数kappa和R找到最佳值。然后,其余的参数mu可以推断出,估计强度lambda。

If the argument lambda is provided, then this is used as the value of lambda. Otherwise, if X is a point pattern, then  lambda will be estimated from X.  If X is a summary statistic and lambda is missing, then the intensity lambda cannot be estimated, and the parameter mu will be returned as NA.
如果参数lambda,然后使用的价值的lambda。否则,如果X是一个点的模式,那么lambda将估计X。如果X是一个简要统计和lambda失踪,然后强度lambda无法估计的参数mu将返回NA。

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.
其余的参数rmin,rmax,q,p的最小对比度控制的方法,请参阅mincontrast。

The Matern Cluster process can be simulated, using rMatClust.
Matern聚类过程可以模拟的,使用rMatClust。

Homogeneous or inhomogeneous Matern Cluster models can also be fitted using the function kppm.
均匀或不均匀Matern的聚类模式也可以安装使用的功能kppm。

The optimisation algorithm can be controlled through the additional arguments "..." which are passed to the optimisation function optim. For example, to constrain the parameter values to a certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that respects box constraints, and use the arguments lower and upper to specify (vectors of) minimum and maximum values for each parameter.
优化算法可以通过额外的参数来控制"...",是传递给优化函数optim。例如,要限制的参数值在一定范围内,使用参数method="L-BFGS-B"选择尊重框式约束的优化算法,并使用的参数lower和upper,“指定(向量)为每个参数的最小值和最大值。


值----------Value----------

An object of class "minconfit". There are methods for printing and plotting this object. It contains the following main components:
对象的类"minconfit"。有这个对象的打印和绘图的方法。它包含以下主要组件:


参数:par
Vector of fitted parameter values.
拟合参数值的向量。


参数:fit
Function value table (object of class "fv") containing the observed values of the summary statistic (observed) and the theoretical values of the summary statistic computed from the fitted model parameters.  
函数值表(对象类"fv")的观测值的汇总统计(observed)与理论值拟合模型参数的汇总统计计算。


(作者)----------Author(s)----------



Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>




参考文献----------References----------

Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton.
An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63, 252&ndash;258.

参见----------See Also----------

kppm, matclust.estK, thomas.estpcf, thomas.estK, lgcp.estK, mincontrast, pcf, rMatClust to simulate the fitted model.
kppm,matclust.estK,thomas.estpcf,thomas.estK,lgcp.estK,mincontrast,pcf,rMatClust模拟拟合模型。


实例----------Examples----------


    data(redwood)
    u <- matclust.estpcf(redwood, c(kappa=10, R=0.1))
    u
    plot(u, legendpos="topright")

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-15 21:49 , Processed in 0.026676 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表