Jdot(spatstat)
Jdot()所属R语言包:spatstat
Multitype J Function (i-to-any)
多类型,的J函数(我对任何)
译者:生物统计家园网 机器人LoveR
描述----------Description----------
For a multitype point pattern, estimate the multitype J function summarising the interpoint dependence between the type i points and the points of any type.
对于多类型的点模式,估计的多类型J函数总结INTERPOINT之间的类型i点和点的任何类型的依赖。
用法----------Usage----------
Jdot(X, i, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)
参数----------Arguments----------
参数:X
The observed point pattern, from which an estimate of the multitype J function Ji.(r) will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
观测点的模式,从估计的多类型J函数Ji.(r)将被计算。它必须是一个多类型的点模式(一个标记点图案的标记是一个因素)。请参阅“详细信息”下。
参数:i
The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).
X距离的测量点的类型(标记值)。一个字符串(或东西都将被转换为一个字符串)。默认的第一级marks(X)。
参数:eps
A positive number. The resolution of the discrete approximation to Euclidean distance (see below). There is a sensible default.
一个正数。欧几里德距离(见下文)的分辨率的离散逼近。有一个合理的默认。
参数:r
numeric vector. The values of the argument r at which the function Ji.(r) should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on r.
数字矢量。的参数的值r的功能Ji.(r)应进行评估。有一个合理的默认。我们强烈建议用户第一次不指定此参数。请参阅下面的重要条件r。
参数:breaks
An alternative to the argument r. Not normally invoked by the user. See the Details section.
替代到的参数r。通常不是由用户调用。查看详细信息“一节。
参数:...
Ignored.
忽略。
参数:correction
Optional. Character string specifying the edge correction(s) to be used. Options are "none", "rs", "km", "Hanisch" and "best".
可选。字符的字符串指定的边缘校正(s)到被使用。选项"none","rs","km","Hanisch"和"best"。
Details
详细信息----------Details----------
This function Jdot and its companions Jcross and Jmulti are generalisations of the function Jest to multitype point patterns.
此功能Jdot和它的同伴Jcross和Jmulti的功能Jest多类型,点模式的概括。
A multitype point pattern is a spatial pattern of points classified into a finite number of possible “colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.
一个多类型的模式是一个空间格局分为有限数量的可能的“颜色”或“类型”的点。在spatstat包,多类型图案表示作为一个单一的点图案在该点进行标记的对象,并连接到每个点的标记值确定该点的类型。
The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an integer value i=3 will be interpreted as the number 3, not the 3rd smallest level.)
参数X必须是点模式(类的对象"ppp")或任何数据到as.ppp是可以接受的。它必须是一个显着的点图案,并标记矢量X$marks必须是一个因素。参数i将被解释为一个水平的因素X$marks。 (警告:这意味着一个整数值i=3将被解释为数字3,而不是第三最小的水平。)
The “type i to any type” multitype J function of a stationary multitype point process X was introduced by Van lieshout and Baddeley (1999). It is defined by
“类型i任何类型的”多类型J一个固定的多类型的功能点过程X由范·利斯豪特和巴德利(1999年)。它被定义为
where Gi.(r) is the distribution function of the distance from a type i point to the nearest other point of the pattern, and F.(r) is the distribution function of the distance from a fixed point in space to the nearest point of the pattern.
Gi.(r)是分布函数的类型i点的距离最近的其他点的格局,F.(r)是从一个固定的点在空间的分布函数的距离到最近的点的图案。
An estimate of Ji.(r) is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the pattern is a marked Poisson point process, then Ji.(r) = 1. If the subprocess of type i points is independent of the subprocess of points of all types not equal to i, then Ji.(r) equals Jii(r), the ordinary J function (see Jest and Van Lieshout and Baddeley (1996)) of the points of type i. Hence deviations from zero of the empirical estimate of Ji.-Jii may suggest dependence between types.
Ji.(r)的估计是一个多类型模式的探索性数据分析的一个有用的摘要统计。如果模式是一个显着的Poisson点过程,然后Ji.(r) = 1。如果子类型i点是独立的子进程的的各类不等于i,那么Ji.(r)等于Jii(r),普通J点功能(见Jest和范·利斯豪特和巴德利(1996))点的类型i。因此,零的经验估计Ji.-Jii的从的偏差可能会建议类型之间的依赖关系。
This algorithm estimates Ji.(r) from the point pattern X. It assumes that X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in X as X$window) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier and border corrections. The main work is done by Gmulti and Fest.
该算法估计Ji.(r)点模式X。它假定X可以被视为一个实现了一个固定的(的空间均匀)随机空间点在飞机上,观察到一个有限的窗口。窗口(中指定XX$window的)可以有任意形状的。边缘效应产生的偏差,在相同的方式处理在Jest,采用Kaplan-Meier和边界更正。本文的主要工作是通过Gmulti和Fest。
The argument r is the vector of values for the distance r at which Ji.(r) should be evaluated. The values of r must be increasing nonnegative numbers and the maximum r value must exceed the radius of the largest disc contained in the window.
参数r是向量的值的距离r,Ji.(r)应该进行评估。 r的值,必须增加非负数和最大r值必须超过包含在窗口中的最大的光盘的半径。
值----------Value----------
An object of class "fv" (see fv.object).
类的一个对象"fv"(见fv.object)。
Essentially a data frame containing six numeric columns
本质上是一个数据框包含6个数字列
参数:J
the recommended estimator of Ji.(r), currently the Kaplan-Meier estimator.
建议Ji.(r),目前的Kaplan-Meier估计估计。
参数:r
the values of the argument r at which the function Ji.(r) has been estimated
的参数的值的r在哪些函数Ji.(r)已估计
参数:km
the Kaplan-Meier estimator of Ji.(r)
Kaplan-Meier法估计Ji.(r)
参数:rs
the “reduced sample” or “border correction” estimator of Ji.(r)
“减少样品”或“边界校正”估计Ji.(r)
参数:han
the Hanisch-style estimator of Ji.(r)
Hanisch式估计Ji.(r)
参数:un
the “uncorrected” estimator of Ji.(r) formed by taking the ratio of uncorrected empirical estimators of 1 - Gi.(r) and 1 - F.(r), see Gdot and Fest.
“裸眼”估计Ji.(r)形成的裸经验估计1 - Gi.(r)和1 - F.(r),Gdot和Fest之比。
参数:theo
the theoretical value of Ji.(r) for a marked Poisson process, namely 1.
的理论值Ji.(r)显着的泊松过程,即1。
The result also has two attributes "G" and "F" which are respectively the outputs of Gdot and Fest for the point pattern.
结果也有两个属性"G"和"F"分别Gdot和Fest点模式的输出。
警告----------Warnings----------
The argument i is interpreted as a level of the factor X$marks. It is converted to a character string if it is not already a character string. The value i=1 does not refer to the first level of the factor.
解释的参数i作为的因素X$marks的水平。如果它不是已经是一个字符串,它被转换为一个字符串。值i=1不是指第一级的因素。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>
参考文献----------References----------
A nonparametric measure of spatial interaction in point patterns. Statistica Neerlandica 50, 344–361.
Indices of dependence between types in multivariate point patterns. Scandinavian Journal of Statistics 26, 511–532.
参见----------See Also----------
Jcross, Jest, Jmulti
Jcross,Jest,Jmulti
实例----------Examples----------
# Lansing woods data: 6 types of trees[蓝星树林数据:6种树木]
data(lansing)
Jh. <- Jdot(lansing, "hickory")
plot(Jh.)
# diagnostic plot for independence between hickories and other trees[山核桃和其他树木之间的独立性诊断图]
Jhh <- Jest(lansing[lansing$marks == "hickory", ])
plot(Jhh, add=TRUE, legendpos="bottom")
## Not run: [#不运行:]
# synthetic example with two marks "a" and "b"[合成例与2马克的“a”和“b”]
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jdot(pp, "a")
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|