eem(spatstat)
eem()所属R语言包:spatstat
Exponential Energy Marks
指数能源标志
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given a point process model fitted to a point pattern, compute the Stoyan-Grabarnik diagnostic “exponential energy marks” for the data points.
由于模式装到一个点一个点过程模型,计算的斯托扬Grabarnik诊断的“指数的数据点的能量标记”。
用法----------Usage----------
eem(fit, check=TRUE)
参数----------Arguments----------
参数:fit
The fitted point process model. An object of class "ppm".
拟合点过程模型。对象的类"ppm"。
参数:check
Logical value indicating whether to check the internal format of fit. If there is any possibility that this object has been restored from a dump file, or has otherwise lost track of the environment where it was originally computed, set check=TRUE.
逻辑值,该值指示是否要检查的内部格式fit。如果有任何可能,这个对象已经从dump文件中恢复,或以其他方式失去它最初被计算的环境中,设置check=TRUE。
Details
详细信息----------Details----------
Stoyan and Grabarnik (1991) proposed a diagnostic tool for point process models fitted to spatial point pattern data. Each point x_i of the data pattern X is given a "mark" or "weight"
(斯托扬和Grabarnik的1991)提出了安装空间点格局数据点过程模型的诊断工具。每个点x_i的数据模式的X被赋予一个“标记”或“重量”
where \hatλ(x_i,X) is the conditional intensity of the fitted model. If the fitted model is correct, then the sum of these marks for all points in a region B has expected value equal to the area of B.
\hatλ(x_i,X)强度的拟合模型是有条件的。如果合适的模型是正确的,那么这些标记为所有区域B点的总和已经预计值等于该区域的B。
The argument fit must be a fitted point process model (object of class "ppm"). Such objects are produced by the maximum pseudolikelihood fitting algorithm ppm). This fitted model object contains complete information about the original data pattern and the model that was fitted to it.
参数fit必须是一个安装点过程模型(对象类"ppm"“)。这些对象是由的最大pseudolikelihood拟合算法ppm)。拟合模型对象的原始数据模式,安装到它的模型,包含了完整的信息。
The value returned by eem is the vector of weights m_i associated with the points x_i of the original data pattern. The original data pattern (in corresponding order) can be extracted from fit using data.ppm.
返回的值eem的权重向量m_i与点x_i的原始数据模式。可以提取fit使用data.ppm原始数据模式(在相应的命令)。
The function diagnose.ppm produces a set of sensible diagnostic plots based on these weights.
函数diagnose.ppm产生一组合理的诊断图,根据这些权重。
值----------Value----------
A vector containing the values of the exponential energy mark for each point in the pattern.
一种向量,包含的值的指数能量标记模式中的每个点。
(作者)----------Author(s)----------
Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>
参考文献----------References----------
Second-order characteristics for stochastic structures connected with Gibbs point processes. Mathematische Nachrichten, 151:95–100.
参见----------See Also----------
diagnose.ppm, ppm.object, data.ppm, residuals.ppm, ppm
diagnose.ppm,ppm.object,data.ppm,residuals.ppm,ppm
实例----------Examples----------
data(cells)
fit <- ppm(cells, ~x, Strauss(r=0.15))
ee <- eem(fit)
sum(ee)/area.owin(cells$window) # should be about 1 if model is correct[如果模型是正确的,应该在1]
Y <- setmarks(cells, ee)
plot(Y, main="Cells data\n Exponential energy marks")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|