找回密码
 注册
查看: 234|回复: 0

R语言 spatstat包 bw.relrisk()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 13:14:38 | 显示全部楼层 |阅读模式
bw.relrisk(spatstat)
bw.relrisk()所属R语言包:spatstat

                                         Cross Validated Bandwidth Selection for Relative Risk Estimation
                                         交叉验证的相对风险估计的带宽选择

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk.
使用交叉验证来选择相对风险的估计平滑带宽。


用法----------Usage----------


   bw.relrisk(X, method = "likelihood", nh = spatstat.options("n.bandwidth"),
   hmin=NULL, hmax=NULL, warn=TRUE)



参数----------Arguments----------

参数:X
A multitype point pattern (object of class "ppp" which has factor valued marks).  
一个多类型的点模式(对象类"ppp"因素价值马克)。


参数:method
Character string determining the cross-validation method. Current options are "likelihood", "leastsquares" or "weightedleastsquares".  
字符串确定交叉验证的方法。当前选项是"likelihood","leastsquares"或"weightedleastsquares"。


参数:nh
Number of trial values of smoothing bandwith sigma to consider. The default is 32.  
试验的值平滑的带宽sigma的数考虑的问题。默认值是32。


参数:hmin, hmax
Optional. Numeric values. Range of trial values of smoothing bandwith sigma to consider. There is a sensible default.  
可选。数值。范围的试验值的平滑带宽sigma考虑。有一个合理的默认。


参数:warn
Logical. If TRUE, issue a warning if the minimum of the cross-validation criterion occurs at one of the ends of the search interval.  
逻辑。如果TRUE,发出警告,如果最小的交叉验证标准发生在搜索区间的端部之一。


Details

详细信息----------Details----------

This function selects an appropriate bandwidth for the nonparametric estimation of relative risk using relrisk.
此功能选择合适的带宽使用relrisk的非参数估计的相对危险度。

Consider the indicators y[i,j] which equal 1 when data point x[i] belongs to type j, and equal 0 otherwise. For a particular value of smoothing bandwidth, let p*[j](u) be the estimated probabilities that a point at location u will belong to type j.  Then the bandwidth is chosen to minimise either the likelihood, the squared error, or the approximately standardised squared error, of the indicators y[i,j] relative to the fitted values  p*[j](x[i]). See Diggle (2003).
考虑指标y[i,j]平等1数据时指出x[i]属于输入j,和平等0否则。对于一个特定的值的平滑带宽,让我们p*[j](u)是一个点位置u将属于输入j估计概率。然后,带宽被选择以最小化的可能性,平方误差,或约标准化的平方误差的指标y[i,j]相对拟合值p*[j](x[i])。 Diggle(2003年)。

The result is a numerical value giving the selected bandwidth sigma. The result also belongs to the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation criterion as a function of bandwidth.  
其结果是一个数值,给予选定的带宽sigma。结果也属于类"bw.optim"使其可以打印和绘制。图中显示的交叉验证标准的函数的带宽。

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There is a sensible default, based on multiples of Stoyan's rule of thumb bw.stoyan.
范围值的平滑带宽sigma设定的参数hmin, hmax。有一个合理的默认情况下,斯托扬的法治拇指bw.stoyan倍数的基础上。

If the optimal bandwidth is achieved at an endpoint of the interval [hmin, hmax], the algorithm will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the interval by changing the arguments hmin, hmax.
如果实现最佳的带宽在一个端点的时间间隔[hmin, hmax],该算法将发出警告(除非warn=FALSE“)。如果发生这种情况,那么它可能是可取的扩大的时间间隔改变的参数hmin, hmax。

Computation time depends on the number nh of trial values considered, and also on the range [hmin, hmax] of values considered, because larger values of sigma require calculations involving more pairs of data points.
计算时间依赖于数nh考虑的试验值,也取值范围为[hmin, hmax]考虑的,因为较大的值sigma需要涉及更多的对数据点的计算的值。


值----------Value----------

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim" which can be plotted.
一个数值给选定的带宽。结果也属于类"bw.optim"可以绘制。


(作者)----------Author(s)----------


Adrian Baddeley
<a href="mailto:Adrian.Baddeley@csiro.au">Adrian.Baddeley@csiro.au</a>
<a href="http://www.maths.uwa.edu.au/~adrian/">http://www.maths.uwa.edu.au/~adrian/</a>
and Rolf Turner
<a href="mailto:r.turner@auckland.ac.nz">r.turner@auckland.ac.nz</a>




参考文献----------References----------

Statistical analysis of spatial point patterns, Second edition. Arnold.
Kernel estimation of relative risk. Bernoulli 1, 3&ndash;16.

参见----------See Also----------

relrisk, bw.stoyan
relrisk,bw.stoyan


实例----------Examples----------


  data(urkiola)
  
  b <- bw.relrisk(urkiola)
  b
  plot(b)
  b <- bw.relrisk(urkiola, hmax=20)
  plot(b)
  

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-12 16:37 , Processed in 0.025057 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表