make.sigma.nu(SpatioTemporal)
make.sigma.nu()所属R语言包:SpatioTemporal
Crete (Cross)-Covariance Matrices for the Residual Field
克里特岛(十字) - 协方差矩阵的残余场
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Creates covariance and cross-covariance matrices for the space-time residual nu field.
创建的时空残留NU领域的协方差和互协方差矩阵。
用法----------Usage----------
make.sigma.nu(sill, nugget, range, block.sizes, loc.index, dists)
make.sigma.nu.cross.cov(sill, nugget, range, loc.ind1, loc.ind2 =
loc.ind1, loc.ind2.to.1 = 1:max(loc.ind2), T1, T2 = T1, dists)
参数----------Arguments----------
参数:sill, nugget, range
Sill, nugget, and range parameters for the exponential covariance function.
指数的协方差函数的基石,块,范围参数。
参数:block.sizes
A vector of containing the size(s) of each of the diagonal blocks, usually <br> mesa.data.model$nt.
一种向量,含有(s)的每个对角块的大小,通常<br>文章mesa.data.model$nt。
参数:loc.index, loc.ind1, loc.ind2
Vectors indicating the location of each element in the covariance matrix, used to index the dist-matrix to determine the distance between locations, usually mesa.data.model$obs$idx.
,指示的协方差矩阵中的每个元素的位置,用于索引dist矩阵,以确定的位置之间的距离,通常是mesa.data.model$obs$idx矢量图。
参数:dists
Distance matrix giving the distances between the (observed) locations.
给予(实测值)的位置之间的距离的距离矩阵。
参数:loc.ind2.to.1
A vector that translates locations in loc.ind2 to locations in loc.ind1; used to determine if points are collocated.
一个向量,转换位置的loc.ind2中的位置loc.ind1;点,以确定是否搭配。
参数:T1, T2
Vectors with the observation times of each space-time point; used to determine if observtations are coincidental, usually mesa.data.model$obs$date.
与观察时间的每个空间 - 时间点的向量,用于以确定,如果observtations是偶合的,通常是mesa.data.model$obs$date。
值----------Value----------
Returns the block-diagonal covariance or cross-covariance matrix for the spatio-temporal residual nu field.
时空残留怒江字段返回的块对角协方差或互协方差矩阵。
(作者)----------Author(s)----------
Johan Lindstr枚m and Adam Szpiro
参见----------See Also----------
make.sigma.B.full, make.sigma.B
make.sigma.B.full,make.sigma.B
This function is called by loglike.
此功能被称为loglike。
实例----------Examples----------
##First create some random locations[#首先创建一些随机的位置]
x <- rnorm(5)
y <- rnorm(5)
##compute distance matrix[#计算距离矩阵]
D <- as.matrix(dist( cbind(x,y) ))
#a vector of locations[矢量的位置]
I <- c(1,2,3,1,4,4,3,2,1,1)
T <- c(1,1,1,2,2,3,3,3,3,4)
##create a block diagonal matrix consisting of four parts with[#创建四个部分组成的块对角矩阵]
##exponential covariance using same sill, range, and nugget, but[#指数的协方差使用相同的窗台,范围和金块,但]
##different locations in each block.[#在每个块中的不同位置。]
sigma.nu <- make.sigma.nu(sill=2, nugget=.1, range=.4,
block.sizes=c(3,2,4,1), dists=D, loc.index=I)
print(sigma.nu)
sigma.nu.c <- make.sigma.nu.cross.cov(sill=2, nugget=.1, range=.4,
loc.ind1=I, loc.ind2=I[7:10], T1=T, T2=T[7:10], dists=D)
print(sigma.nu.c)
##compare the cross-covariance with the relevant part of sigma.nu[#比较与sigma.nu的有关部分的互协方差]
range(sigma.nu.c-sigma.nu[,7:10])
##an alternative showing the use of loc.ind2.to.1[#的替代方法示出了使用loc.ind2.to.1]
sigma.nu.c <- make.sigma.nu.cross.cov(sill=2, nugget=.1, range=.4,
loc.ind1=I, loc.ind2=1:2, loc.ind2.to.1=4:3,
T1=T, T2=c(3,3), dists=D[,4:3])
print(sigma.nu.c)
##compare the cross-covariance with the relevant part of sigma.nu[#比较与sigma.nu的有关部分的互协方差]
range(sigma.nu.c-sigma.nu[,6:7])
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|