找回密码
 注册
查看: 318|回复: 0

R语言 SpatialVx包 spatMLD()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 12:58:39 | 显示全部楼层 |阅读模式
spatMLD(SpatialVx)
spatMLD()所属R语言包:SpatialVx

                                         Test for equal predictive ability on average over a regularly gridded space
                                         定期网格空间上的平等平均的预测能力测试

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Test for equal predictive ability (for two forecast models) on average over a regularly gridded space using the method of Hering and Genton (2011).
预测能力(两种预测模型)等于平均在一个经常网格的空间,使用的方法赫林和Genton先生(2011年)的测试。


用法----------Usage----------


spatMLD(x, y1, y2, lossfun = "corrskill", trend = "ols", loc = NULL, maxrad = 20, dx = 1, dy = 1, zero.out = FALSE, ...)
fit.spatMLD(object)
## S3 method for class 'spatMLD'
summary(object, ...)
## S3 method for class 'spatMLD'
plot(x, ...)



参数----------Arguments----------

参数:x,y1,y2
spatMLD: m X n matrices defining the (gridded) verification set where y1 and y2 are the two forecast models being compared.  plot.spatMLD: x is a list returned by spatMLD.  
spatMLD:m×n的矩阵定义(网格)的验证集y1和y2是两个预测模型进行比较。 plot.spatMLD:x是的列表返回spatMLD。


参数:object
fit.spatMLD this is the output returned by spatMLD.  summary.spatMLD: list object returned by spatMLD or fit.spatMLD.  
fit.spatMLD是的输出返回spatMLD。 summary.spatMLD:列表对象返回spatMLD或fit.spatMLD。


参数:lossfun
character anming a loss function to use in finding the loss differential for the fields.  Default is to use correlation as the loss function.  Must have arguments x and y, and may have any additional arguments.  
安明损失函数的字符使用的领域找到了损失差。默认是使用相关的损失函数。必须有参数x和y,并可能有任何额外的参数。


参数:trend
character saying "ols" if it is desired to have the spatial trend of the loss differential estimated by ordinary least squares, or a matrix (of appropriate dimension) or single numeric giving the value of the spatial trend, or anything else (e.g., 0, NA or NULL) if trend is assumed to be constant.
字符“醇”,如果它是理想的有空间普通最小二乘估计的损失差的趋势,或矩阵(适当的维数)或单个数值给出的空间的趋势,或其他任何的值(例如, 0,NA或NULL),如果趋势被假定为是恒定的。


参数:loc
(optional) mn X 2 matrix giving location coordinates for each grid point.  Only used if trend is "ols".  If NULL, they are taken to be the grid expansion of the dimension of x (i.e., cbind(rep(1:dim(x)[1],dim(x)[2]), rep(1:dim(x)[2],each=dim(x)[1]))).  
(可选)MN×2矩阵给位置,每个网格点的坐标。仅用于发展趋势是“醇”。如果为NULL,他们采取的是电网扩建的尺寸x(即CBIND(REP(1:DIM(X)[1],朦朦胧胧(X)[2]),REP(1:暗淡(x)的[2],每个=暗淡(x)的[1])))。


参数:maxrad
numeric giving the maximum radius for finding variogram differences per the R argument of vgram.matrix.  
数字的最大半径为寻找每R的vgram.matrix参数的变异函数的差异。


参数:dx, dy
dx and dy of vgram.matrix.  
dx和dyvgram.matrix。


参数:zero.out
logical, should the variogram be computed only over non-zero values of the process?  If TRUE, a modified version of vgram.matrix is used (variogram.matrix).
逻辑,应变差函数计算只对非零值的过程吗?如果为true,修改后的版本vgram.matrix(variogram.matrix“)。


参数:...
spatMLD: optional additional arguments to lossfun.  Not used by the summary or plot functions.  
spatMLD:可选的额外参数lossfun。不使用的摘要或绘图功能。


Details

详细信息----------Details----------

Hering and Genton (2011) introduce a test procedure for comparing spatial fields.  First, a loss function, g(x,y), is calculated, which can be any appropriate loss function.  This is calculated for each of two forecast fields.  The loss differential field is then given by:
赫林和Genton先生(2011)引入了一个测试程序进行比较的空间领域。首先,损失函数,克(的x,y),计算,它可以是任何适当的损失函数。这是计算的每个的两个预测字段。 “损失量”字段由下式给出:

D(s) = g(x(s),y1(s)) - g(x(s),y2(s)), where s are the spatial locations, x is the verification field, and y1 and y2 are the two forecast fields.
ð()=克(×(),Y1()) - 克(×(),Y2()),其中,s是空间位置,x是验证字段,y1和y2两种预测领域。

It is assumed that D(s) = phi(s) + psi(s), where phi(s) is the mean trend and psi(s) is a mean zero stationary process with unknown covariance function C(h) = cov(psi(s),psi(s+h)).  In particular, the argument trend represents phi(s), and the default is that the mean is equal (and zero) over the entire domain.  If it is believed that this is not the case, then it should be removed before finding the covariance.  Currently, trend estimation is performed via lm, but it is also allowed to remove the trend using some other trend in numeric form of appropriate dimension (e.g., 1 or m X n, or something else that is allowed for M - N, where M is an m X n matrix).  To estimate the trend in another way, see e.g. Hering and Genton (2011) and references therein.
据推测,D(S)=φ(S)+ PSI(s),其中φ(S)的平均趋势和PSI(S)是一个零均值平稳过程与未知的协方差函数C(H)=冠状病毒(磅磅(S),(S + H))。特别是,参数趋势表示φ(S),默认情况下是在整个域的均值是相等(零)。如果它被认为,这是没有的情况下,那么它应之前找到的协方差除去。目前,趋势估计通过流明,但它也允许删除的趋势,使用适当的尺寸以数字形式(如1或M×N的其他一些趋势,或别的东西,是允许的M  -  N,其中M是一个m X n的矩阵)。为了估计的趋势以另一种方式,例如见赫林和Genton先生(2011年)和参考文献。

A test is constructed to test the null hypothesis of equal predictive ability on average.  That is,
测试是构建平等平均的预测能力进行测试的零假设。即,

H_0: 1/|D| int_D E[D(s)]ds = 0, where |D| is the area of the domain,
H_0:1 / | D | int_D E [D(S)] DS = 0,其中| D |是该区域的域,

The test statistic is given by
的检验统计量由下式给出

S_V = mean(D(s))/sqrt(mean(C(h))),
S_V =(D(S))/ SQRT(意思是(C(H)))的,

where C(h) = gamma(infinity|p) - gamma(h|p) is a fitted covariance function for the loss differential field.  The test statistic is assumed to be N(0,1) so that if the p-value is smaller than the desired level of significance, the null hypothesis is not accepted.
其中,C(H)=γ(无穷| P) - γ(H P)是一个装协方差函数的损失微分域。的检验统计量被假定为N(0,1),因此,如果p-值是小于所需的显着性水平,零假设不接受。

For this function, an exponential variogram is used (at some point, this function will be amended to allow general variogram models).  Specifically,
对于这个函数,指数变差函数的使用(在某些时候,这一功能就会被修改,允许一般的变异函数模型)。具体来说,

gamma(h|sigma,theta) = sigma^2*(1 - exp(-h/theta))
γ(H |σ,θ)= SIGMA ^ 2 *(1  -  EXP(-h/theta))

Also, although the testing procedure can be applied to irregularly spaced locations (non-gridded), this function is set up only for gridded fields in order to take advantage of computational efficiencies (i.e., use of vgram.matrix), as these are the types of verification sets in mind for this package.  Eventually, a similar function will be added for non-gridded fields.
另外,虽然可以应用于不规则地间隔开的位置(非格点)的测试过程,此功能被建立仅用于网格化领域中为了利用的计算效率(即,使用vgram.matrix),因为这些都是验证类型设置在心中为这个包。最终,一个类似的功能将被添加非格点的字段。

The above test assumes constant spatial trend.  It is possible to remove any spatial trend in D(s) before applying the test.
上述测试假设恒定的空间趋势。这是可能的,以消除任何空间D()中的趋势施加测试之前。

The actual test statistic is computed by the summary function.  Isotropy can be checked by the plot in the lower right panel of the result of the plot method function.  The function nls is used to fit the variogram model.
实际测试数据计算的汇总函数。各向同性,可检查的结果图法功能在面板右下方的图。功能免入息审查贷款计划来拟合变差函数模型。

For application to precipitation fields, and introduction to the image warp (coming soon) and distance map loss functions, see Gilleland (2012).
对于应用程序的降水场,并引入图像扭曲(即将推出)距离图的损失函数,Gilleland(2012年)。


值----------Value----------

A list object is returned with possible components:
返回一个List对象与可能的组成部分:


参数:Vx.name,Mod1.name,Mod2.name
characters naming the fields under comparison
字符命名的字段比较


参数:lossfun,lossfun.args,vgram.args
same as the arguments input to the spatMLD function.
相同的论据输入的spatMLD函数。


参数:d
m X n matrix giving the loss differential field, D(s).
M×N矩阵损失微分域,D(S)。


参数:trend
If trend is "ols", a list object of class "lm".  If trend is a numeric, it is the same as the value passed in.
如果趋势是“醇”,一个列表对象的类“lm”。如果趋势是一个数字,它是一样的,传入的值。


参数:loc
If trend is "ols" or a numeric, then this is the same as the argument passed in, or if NULL, it is the expanded grid coordinates.
如果趋势是“醇”或数字,然后传入的参数是一样的,如果为NULL,它是扩展的网格坐标。


参数:lossdiff.vgram
list object as returned by vgram.matrix
列表对象返回的vgram.matrix


参数:vgmodel
list object as returned by nls containing the fitted exponential variogram model where s is the estimate of sigma, and r of theta (i.e., the range).
列表对象返回的免入息审查贷款计划的拟合指数的变异函数模型,其中s是标准差估计,和r的θ(即范围)。

summary.spatMLD invisibly returns the same list object as above with additional components:
summary.spatMLD无形地返回相同的列表对象的上述附加组件:


参数:Dbar
the estimated mean loss differential (over the entire field).
估计出的平均损失差(在整个字段)。


参数:test.statistic
the test statistic.
检验统计量。


参数:p.value
the (two-sided) p-value under the assumption of standard normality of the test statistic.
(双面)p-值的假设下的标准的正常性的检验统计量。


(作者)----------Author(s)----------



Eric Gilleland




参考文献----------References----------




参见----------See Also----------

vgram.matrix, nls, corrskill, abserrloss, sqerrloss, distmaploss
vgram.matrix,nls,corrskill,abserrloss,sqerrloss,distmaploss


实例----------Examples----------


data(pert000)
data(pert004)
data(pert006)
look <- spatMLD(x=pert000, y1=pert004, y2=pert006, lossfun="abserrloss", maxrad=8)
look <- fit.spatMLD(look)
plot(look)
summary(look)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-10 13:11 , Processed in 0.034842 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表