mspe.uk(SpatialTools)
mspe.uk()所属R语言包:SpatialTools
Calculates mean-square prediction error of Universal Kriging predictions
,泛克里格预测的计算均方预测误差
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Calculates mean-square prediction error of Universal Kriging predictions using w, the n \times np matrix of kriging weights, V, the (positive definite) covariance matrix of the observed responses, Vp, the (positive definite) covariance matrix of the predicted responses,and Vop, the n x np matrix of covariances between the observed responses and the responses to be predicted. Uses Armadillo C++ template via RcppArmadillo to perform most of the operations.
,泛克里格预测使用w,n \times np的克立格法的权重矩阵,V,(正定)协方差矩阵所观察到的反应,Vp,计算均方预测误差,(正定)的协方差矩阵的预测的响应,和Vop,n x np所观察到的反应和响应之间的协方差矩阵来进行预测。使用的犰狳C + +模板通过RcppArmadillo执行的操作。
用法----------Usage----------
mspe.uk(w, V, Vp, Vop)
参数----------Arguments----------
参数:w
The matrix of kriging weights for the predicted responses. The size is n \times np
克立格法的权重矩阵预测的响应。的大小是n \times np
参数:V
The covariance matrix of the observed responses. The size is n times n.
所观察到的响应的协方差矩阵。的大小n times n。
参数:Vp
The covariance matrix of the responses to be predicted. The size is np times np.
要被预测的协方差矩阵的答复。的大小np times np。
参数:Vop
The cross-covariance between the observed responses and the responses to be predicted. The size is n \times np
所观察到的反应和要被预测的响应之间的互协方差。的大小是n \times np
值----------Value----------
The function returns a list containing mspe, a matrix of size n \times 1 containing the mean-square prediction error of the predicted responses.
该函数返回一个列表,其中包含mspe,矩阵的大小n \times 1的均方预测误差预测的响应。
(作者)----------Author(s)----------
Joshua French
参见----------See Also----------
krige.uk, weights.uk
krige.uk,weights.uk
实例----------Examples----------
data(toydata)
X <- toydata$X
V <- toydata$V
Xp <- toydata$Xp
Vp <- toydata$Vp
Vop <- toydata$Vop
w <- pweights.uk(X, V, Xp, Vp, Vop)
mspe.uk(w, V, Vp, Vop)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|