找回密码
 注册
查看: 386|回复: 0

R语言 SpatialExtremes包 print.latent()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 12:44:59 | 显示全部楼层 |阅读模式
print.latent(SpatialExtremes)
print.latent()所属R语言包:SpatialExtremes

                                        Printing objects of class “latent”
                                         打印对象的类“潜伏”

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

A method for printing object of class “maxstab”.
为打印的类“maxstab”对象的方法。


用法----------Usage----------


## S3 method for class 'latent'
print(x, digits = max(3, getOption("digits") - 3),
..., level = 0.95)



参数----------Arguments----------

参数:x
An object of class “latent”. Most often, x is the output of the latent function.
对象类“潜伏”。大多数情况下,x是的输出latent功能。


参数:digits
The number of digits to be printed.
要打印的数字位数。


参数:...
Other options to be passed to the print function.
到传递给print功能的其他选项。


参数:level
A numeric giving the significance level for the credible intervals.
一个数字的可信区间,显着性水平。


值----------Value----------

Print several information on screen.
在屏幕上打印多的信息。


(作者)----------Author(s)----------


Mathieu Ribatet



实例----------Examples----------


## Generate realizations from the model[#从模型生成实现]
n.site <- 15
n.obs <- 35
coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10))

gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1)
gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1)
gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1)

locs <- 26 + 0.5 * coord[,"lon"] + gp.loc
scales <- 10 + 0.2 * coord[,"lat"] + gp.scale
shapes <- 0.15 + gp.shape

data <- matrix(NA, n.obs, n.site)
for (i in 1:n.site)
  data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i])

loc.form <- y ~ lon
scale.form <- y ~ lat
shape.form <- y ~ 1

hyper <- list()
hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02))
hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10))
hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3))
hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0)
hyper$betaIcov <- list(loc = solve(diag(c(400, 100))),
                       scale = solve(diag(c(400, 100))),
                       shape = solve(diag(c(10), 1, 1)))

## We will use an exponential covariance function so the jump sizes for[#我们将使用指数的协方差函数,所以跳的大小为]
## the shape parameter of the covariance function are null.[#协方差函数的形状参数是空的。]
prop <- list(gev = c(2.5, 1.5, 0.2), ranges = c(0.7, 0.75, 0.9),
smooths = c(0,0,0))
start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths
              = c(1, 1, 1),  beta = list(loc = c(26, 0), scale = c(10, 0),
                               shape = c(0.15)))

mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form,
             shape.form = shape.form, hyper = hyper, prop = prop, start = start,
             n = 500)
mc

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-10 05:38 , Processed in 0.021756 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表