找回密码
 注册
查看: 291|回复: 0

R语言 SpatialExtremes包 map.latent()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 12:43:47 | 显示全部楼层 |阅读模式
map.latent(SpatialExtremes)
map.latent()所属R语言包:SpatialExtremes

                                        Two dimensional map from a Bayesian hierarchical model
                                         从贝叶斯层次模型的二维图

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function plots 2D maps from a Markov chain.
此函数图2D图,从一个马尔可夫链。


用法----------Usage----------


map.latent(fitted, x, y, covariates = NULL, param = "quant", ret.per =
100, col = terrain.colors(64), plot.contour = TRUE, fun = mean, level =
0.95, show.data = TRUE, control = list(nlines = 500), ...)



参数----------Arguments----------

参数:fitted
An object of class "latent". Typically this will be the output of latent.
对象类“潜伏”。通常情况下,这将是输出latent。


参数:x,y
Numeric vector specifying the coordinates of the grid points.
数值向量指定的网格点的坐标。


参数:covariates
An array specifying the covariates at each grid point defined by x and y. If NULL, no covariate is needed.
一个数组,指定的协变量,在每个格点x和y。如果NULL,没有协变量是必要的。


参数:param
A character string. Must be one of "loc", "scale", "shape" or "quant" for a map of the location, scale, shape parameters or for a map of a specified quantile.
一个字符串。必须有一个“禄”,“规模化”,“形”或“定量”的位置,规模,形状参数或指定的位数图的图。


参数:ret.per
A numeric giving the return period for which the quantile map is plotted. It is only required if param =       "quant".
一个数字的位数图绘制的回报期。如果只需要param =       "quant"。


参数:col
A list of colors such as that generated by 'rainbow', 'heat.colors', 'topo.colors', 'terrain.colors' or similar functions.
列表的颜色,如所产生的“彩虹”,“heat.colors”,“topo.colors”,“terrain.colors”或类似的功能。


参数:plot.contour
Logical. If TRUE (default), contour lines are added to the plot.
逻辑。如果TRUE(默认),等高线的图。


参数:fun
A character string specifying the function to be used to get posterior point estimates. The default is to take posterior means.
一个字符串,指定要使用的函数,得到后点估计的。的默认是,采取后路手段。


参数:level
A numeric specifying the significance level for the pointwise credible intervals.
一个数字,指定的逐点置信区间的显着性水平。


参数:show.data
Logical. Should the locations where have observed the process have to be plotted?
逻辑。的地方观察的过程要绘制的呢?


参数:control
A list with named components specifying options to be passed to rgp. Typically one might want specify nlines to reduce the computational demand.
命名的组件列表,指定要传递给rgp。通常情况下,我们可能需要指定nlines,以减少计算量。


参数:...
Several arguments to be passed to the image function.
到传递给image功能的几个参数。


值----------Value----------

A plot and a invisible list containing all the data required to do the plot.
图和一个无形的列表,其中包含所有所需的数据做的图。


(作者)----------Author(s)----------


Mathieu Ribatet



参见----------See Also----------

condrgp, map
condrgp,map


实例----------Examples----------


## Not run: [#不运行:]
## Generate realizations from the model[#从模型生成实现]
n.site <- 30
n.obs <- 50
coord <- cbind(lon = runif(n.site, -10, 10), lat = runif(n.site, -10 , 10))

gp.loc <- rgp(1, coord, "powexp", sill = 4, range = 20, smooth = 1)
gp.scale <- rgp(1, coord, "powexp", sill = 0.4, range = 5, smooth = 1)
gp.shape <- rgp(1, coord, "powexp", sill = 0.01, range = 10, smooth = 1)

locs <- 26 + 0.5 * coord[,"lon"] + gp.loc
scales <- 10 + 0.2 * coord[,"lat"] + gp.scale
shapes <- 0.15 + gp.shape

data <- matrix(NA, n.obs, n.site)
for (i in 1:n.site)
  data[,i] <- rgev(n.obs, locs[i], scales[i], shapes[i])

loc.form <- y ~ lon
scale.form <- y ~ lat
shape.form <- y ~ 1

hyper <- list()
hyper$sills <- list(loc = c(1,8), scale = c(1,1), shape = c(1,0.02))
hyper$ranges <- list(loc = c(2,20), scale = c(1,5), shape = c(1, 10))
hyper$smooths <- list(loc = c(1,1/3), scale = c(1,1/3), shape = c(1, 1/3))
hyper$betaMeans <- list(loc = rep(0, 2), scale = c(9, 0), shape = 0)
hyper$betaIcov <- list(loc = solve(diag(c(400, 100))),
                       scale = solve(diag(c(400, 100))),
                       shape = solve(diag(c(10), 1, 1)))

## We will use an exponential covariance function so the jump sizes for[#我们将使用指数的协方差函数,所以跳的大小为]
## the shape parameter of the covariance function are null.[#协方差函数的形状参数是空的。]
prop <- list(gev = c(2.5, 1.5, 0.2), ranges = c(0.7, 0.75, 0.9), smooths = c(0,0,0))
start <- list(sills = c(4, .36, 0.009), ranges = c(24, 17, 16), smooths
              = c(1, 1, 1),  beta = list(loc = c(26, 0.5), scale = c(10, 0.2),
                               shape = c(0.15)))

## Generate a Markov chain[#生成马尔可夫链]
mc <- latent(data, coord, loc.form = loc.form, scale.form = scale.form,
             shape.form = shape.form, hyper = hyper, prop = prop, start = start,
             n = 100)

x.grid <- y.grid <- seq(-10, 10, length = 50)
map.latent(mc, x.grid, y.grid, param = "shape")

## End(Not run)[#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-10 05:39 , Processed in 0.023306 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表