找回密码
 注册
查看: 1062|回复: 0

R语言 SpatialExtremes包 kriging()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 12:43:00 | 显示全部楼层 |阅读模式
kriging(SpatialExtremes)
kriging()所属R语言包:SpatialExtremes

                                         Simple kriging interpolation
                                         简单克里金插值

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function interpolates a zero mean Gaussian random field using the simple kriging predictor.
这个函数内插一个零均值高斯随机使用简单克里格法预测的领域。


用法----------Usage----------


kriging(data, data.coord, krig.coord, cov.mod = "whitmat", sill, range,
smooth, smooth2 = NULL, grid = FALSE, only.weights = FALSE)



参数----------Arguments----------

参数:data
A numeric vector or matrix. If data is a matrix then the simple kriging predictor is given for each realisation, i.e., each row of data.
一个数值向量或矩阵。如果data是一个矩阵,那么简单克里金预测,给出了每个实现,也就是每一行的data。


参数:data.coord
A numeric vector or matrix specifying the coordinates of the observed data. If data.coord is a matrix, each row must corresponds to one location.
甲数值向量或矩阵的指定的观测数据的坐标。如果data.coord是一个矩阵,每一行必须对应到一个位置。


参数:krig.coord
A numeric vector or matrix specifying the coordinates where the kriging predictor has to be computed. If krig.coord is a matrix, each row must correspond to one location.
克里格预测要计算一个数值向量或矩阵指定坐标。如果krig.coord是一个矩阵,每一行必须对应到一个位置。


参数:cov.mod
A character string specifying the covariance function family. Must be one of "whitmat", "powexp", "cauchy", "bessel" or "caugen" for the Whittle-Matern, the powered exponential, the Cauchy, the Bessel or the generalized Cauchy covariance families.
一个字符串指定的协方差函数族。必须是一个“whitmat”,“powexp”,“柯西”,“贝塞尔”或“caugen”的为的消减,Matern,动力指数,柯西,贝塞尔或广义柯西协方差家庭的。


参数:sill,range,smooth,smooth2
Numerics specifiying the sill, range, smooth and, if any, the second smooth parameters of the covariance function.  
Numerics的specifiying的窗台,范围,平滑,并且,如果没有,第二平滑参数的协方差函数。


参数:grid
Logical. Does krig.coord specifies a grid?
逻辑。 krig.coord指定一个网格?


参数:only.weights
Logical. Should only the kriging weights be computed? If FALSE, the kriging predictor isn't computed.
逻辑。克里格权重计算?如果FALSE,不计算克里格预测。


值----------Value----------

A list with components
组件列表


参数:coord
The coordinates where the kriging predictor has been computed;
克里格预测已计算的坐标;


参数:krig.est
The kriging predictor estimates;
克里格法预测估计;


参数:grid
Does coord define a grid?;
coord定义一个网格?


参数:weights
A matrix giving the kriging weights: each column corresponds to one prediction location.
给克里格权重矩阵,每一列对应一个预测位置。


(作者)----------Author(s)----------



Mathieu Ribatet




参考文献----------References----------

Spatial Uncertainty Wiley Series in Probability and Statistics.

参见----------See Also----------

condrgp, rgp, covariance.
condrgp,rgp,covariance。


实例----------Examples----------


## Kriging from a single realisation[#实现从单一的克立格法]
n.site <- 50
n.pred <- 512

x.obs <- runif(n.site, -100, 100)
x.pred <- seq(-100, 100, length = n.pred)

data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75)

krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10,
smooth = 0.75)

plot(krig$coord, krig$krig.est, type = "l", xlab = "x", ylab =
expression(hat(Y)(x)))
points(x.obs, data, col = 2, pch = 21, bg = 2)

## Kriging from several realisations[#克立格法的几点认识]
n.real <- 3
data <- rgp(n.real, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75)

krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10,
smooth = 0.75)

matplot(krig$coord, t(krig$krig.est), type = "l", xlab = "x", ylab =
expression(hat(Y)(x)), lty = 1)
matpoints(x.obs, t(data), pch = 21, col = 1:n.real, bg = 1:n.real)
title("Three kriging predictors in one shot")

## Two dimensional kriging on a grid[二维克里格法在网格上]
x.obs <- matrix(runif(2 * n.site, -100, 100), ncol = 2)
x <- y <- seq(-100, 100, length = 100)
x.pred <- cbind(x, y)

data <- rgp(1, x.obs, "whitmat", sill = 1, range = 10, smooth = 0.75)

krig <- kriging(data, x.obs, x.pred, "whitmat", sill = 1, range = 10,
smooth = 0.75, grid = TRUE)

z.lim <- range(c(data, krig$krig.est))
breaks <- seq(z.lim[1], z.lim[2], length = 65)
col <- heat.colors(64)
idx <- as.numeric(cut(data, breaks))

image(x, y, krig$krig.est, col = col, breaks = breaks)
points(x.obs, bg = col[idx], pch = 21)
## Note how the background colors of the above points matches the ones[#注意上述各点的背景色匹配的]
## returned by the image function[#传回的图像功能]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-10 05:39 , Processed in 0.023886 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表