anova(SpatialExtremes)
anova()所属R语言包:SpatialExtremes
Anova Tables
方差分析表
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computes analysis of deviance for objects of class ”maxstab”
计算分析的偏差“类”maxstab的对象
用法----------Usage----------
## S3 method for class 'maxstab'
anova(object, object2, method = "RJ", square = "chol",
...)
## S3 method for class 'spatgev'
anova(object, object2, method = "RJ", square = "chol",
...)
参数----------Arguments----------
参数:object, object2
Two objects of class 'maxstab' or 'spatgev'.
两个类的maxstab或spatgev“的对象。
参数:method
Character string. Must be one of "CB" or "RJ" for the Chandler and Bate or the Rotnitzky and Jewell approaches respectively. See function profile.
字符的字符串。必须有一个“CB”或“RJ”的钱德勒和贝特或Rotnitzky和朱厄尔方法的。请参阅功能profile。
参数:square
The choice for the matrix square root. This is only useful for the 'CB' method. Must be one of 'chol' (Cholesky) or 'svd' (Singular Value Decomposition).
选择矩阵平方根。这是唯一有用的“CB的方法。必须有一个哲(乔列斯基)或“SVD(奇异值分解)。
参数:...
Other options to be passed to the anova function.
到传递给anova功能的其他选项。
Details
详细信息----------Details----------
As ”maxstab” objects are fitted using pairwise likelihood, the model is misspecified. As a consequence, the likelihood ratio statistic is no longer χ^2 distributed. To compute the anova table, we use the methodology proposed by Rotnitzky and Jewell to adjust the distribution of the likelihood ratio statistic.
作为“maxstab”对象安装使用成对的可能性,该模型是来年。作为结果,似然比统计不再χ^2分布。要计算方差分析表中,我们提出的方法由Rotnitzky和朱厄尔调整似然比统计量的分布。
值----------Value----------
This function returns an object of class anova. These objects represent analysis-of-deviance tables.
这个函数返回一个对象类的方差分析。这些对象代表的偏差分析表。
(作者)----------Author(s)----------
Mathieu Ribatet
参考文献----------References----------
the independence loglikelihood Biometrika, 94, 167–183.
parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 77, 485–497.
参见----------See Also----------
fitmaxstab, fitspatgev,
fitmaxstab,fitspatgev,
实例----------Examples----------
##Define the coordinates of each location[#定义的每个位置的坐标]
n.site <- 30
locations <- matrix(rnorm(2*n.site, sd = sqrt(.2)), ncol = 2)
colnames(locations) <- c("lon", "lat")
##Simulate a max-stable process - with unit Frechet margins[#模拟一个最大稳定的过程 - 与单位的Frechet空间]
data <- rmaxstab(50, locations, cov.mod = "gauss", cov11 = 100, cov12 =
25, cov22 = 220)
##Now define the spatial model for the GEV parameters[#GEV参数定义的空间模型]
param.loc <- -10 + 2 * locations[,2]
param.scale <- 5 + 2 * locations[,1] + locations[,2]^2
param.shape <- rep(0.2, n.site)
##Transform the unit Frechet margins to GEV [#变换单位的Frechet空间GEV]
for (i in 1:n.site)
data[,i] <- frech2gev(data[,i], param.loc[i], param.scale[i],
param.shape[i])
##Define three models for the GEV margins to be fitted[#定义三个模型的GEV利润的安装]
loc.form <- loc ~ lat
scale.form <- scale ~ lon + I(lat^2)
shape.form <- shape ~ lon
M0 <- fitspatgev(data, locations, loc.form, scale.form, shape.form)
M1 <- fitspatgev(data, locations, loc.form, scale.form, shape.form,
shapeCoeff2 = 0)
##Model selection[#型号选择]
anova(M0, M1)
anova(M0, M1, method = "CB", square = "svd")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|