SpawMLResidMoran(spacom)
SpawMLResidMoran()所属R语言包:spacom
Testing the (residual) spatial dependency
测试(剩余)的相关关系
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Test of spatial dependency in contextual level residuals from (spatially weighted) multilevel models. The spatial dependency is operationalized by Moran's I coefficient for spatial auto-correlation.
测试空间(空间加权)多层模型依赖于上下文的水平残差。莫兰我的空间自相关系数运作的空间相关性。
用法----------Usage----------
SpawMLResidMoran(srawe.obj, distance.matrix, bandwidths,
kernel = NULL, confidence.intervals = c(0.95))
参数----------Arguments----------
参数:srawe.obj
ResampledSpawMLOutput, or a vector of residuals from a SpawMLOutput or matrix of residuals from a ResampleExactSpawMLOutput
ResampledSpawMLOutput,或残差向量从一个SpawMLOutput或矩阵的残差从ResampleExactSpawMLOutput
参数:distance.matrix
square matrix of dimension n by n, where n is the number of contextual units.
方阵尺寸n by n,其中n是上下文相关单位的数量。
参数:bandwidths
vector of bandwidths for which to compute Moran's I.
vector的带宽来计算莫兰的一
参数:kernel
function applied to the distance matrix. By default NULL, in which case the kernel function <p align="center">w_ij = f(d, h) = (1/2)^((d_ij/h)^2)
功能应用到距离矩阵。缺省情况下NULL,在这种情况下,核函数<p ALIGN="CENTER">w_ij = f(d, h) = (1/2)^((d_ij/h)^2)
is used, where w_ij, d_ij, h are elements of the weight matrix W, of the distance matrix W and the bandwidth h. User-supplied kernel functions have to take 2 arguments and return a matrix of the same dimension as the first argument.
时,其中w_ij, d_ij, h的元素的权重矩阵W,距离矩阵W和带宽h中。用户提供的核心功能有2个参数作为第一个参数,并返回相同尺寸的矩阵。
参数:confidence.intervals
vector of conficence intervals. Defaults to c(.95) which corresponds to 95 %.
vector的conficence间隔。默认为c(.95)对应于95%。
(作者)----------Author(s)----------
Till Junge, Sandra Penic, Guy Elcheroth
实例----------Examples----------
# Residual spatial autocorrelation[剩余的空间自相关]
## for residuals from ResampleAggregateSpawML[#残差ResampleAggregateSpawML为]
# load individual level data, remove collective guilt assignment for the[加载个体层面的数据,除去集体罪责分配]
# data frame, and remove NA's [数据框,并删除NA]
data(traces_ind)
traces_ind <- traces_ind[,-7]
traces_ind <- na.exclude(traces_ind)
# load contextual indicator for aggregation[加载上下文聚集指标]
data(traces_event)
# load precise contextual indicator[加载精确的背景指标]
data(homog_census)
# load distance matrix and create weights[加载距离矩阵和权重]
data(d_geo)
geow_100 <- WeightMatrix(d_geo, bandwidth=100)
# perform ResampleAggregateSpawML[执行ResampleAggregateSpawML]
acc_w_homog_100 <-
ResampleAggregateSpawML(individual.level.data=traces_ind,
contextual.names=c("w_all", "Homog_00"), context.id="area",
formula=cg_acc ~ victim_d + comb_d + male + age_1990 + high_school +
higher_edu + (1|area), contextual.data=traces_event,
precise.data=homog_census, contextual.weight.matrices=list(geow_100,
geow_100), individual.weight.names="weight",
aggregation.functions="weighted.mean", nb.resamples=10)
# perform SpawMLResidMoran for bandwidths 25, 50, 100, 200 [执行SpawMLResidMoran带宽,25,50,100,200]
MI_acc <- SpawMLResidMoran(srawe.obj=acc_w_homog_100,
distance.matrix=d_geo, bandwidths=c(25,50,100,200))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|