fdrOrd(someMTP)
fdrOrd()所属R语言包:someMTP
Controlling the False Discovery Rate in ordered Test
假发现率控制在顺序测试
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Ordinal procedure controlling the FDR and the Generalized FWER
序过程控制FDR和广义FWER的
用法----------Usage----------
fdrOrd(p, q = .01, ord = NULL, GD=FALSE)
kfweOrd(p, k = 1, alpha = 0.01, ord = NULL, alpha.prime = alpha, J = qnbinom(alpha, k, alpha.prime), GD = FALSE)
参数----------Arguments----------
参数:p
vector of p-values
p-值向量
参数:ord
Values on the basis of which the procedure select the hypotheses (following decreasing order). The vector have the same length of p. If NULL the natural ordering is considered.
值的基础上的过程中,选择假设(以下递减顺序)。 p的矢量具有相同的长度。如果NULL的自然顺序被认为是。
参数:q
average FDR level
平均FDR水平
参数:alpha
global significance level
全球性的显着性水平
参数:k
number of allowed errors in kFWE controls
允许kFWE控件中的错误数
参数:J
number of allowed jumps befor stopping
允许的跳数之前打停
参数:alpha.prime
univariate alpha for single step Guo and Romano procedure
单因素阿尔法单步过和罗马过程
参数:GD
Logic value. Should the correction for general dependence be applied?
逻辑值。校正一般依赖?
值----------Value----------
The function returns an object of class someMTP.object. <table summary="R valueblock"> <tr valign="top"><td>rej:</td> <td> a logical vector indicating whenever the related hypotesis have been rejected. </td></tr> <tr valign="top"><td>p:</td> <td> the vector of p-values used in the call</td></tr> <tr valign="top"><td>ord:</td> <td> The vector used to sort the p-values (decrasing).</td></tr> <tr valign="top"><td>MTP:</td> <td> "fdrOrd" or "kfweOrd"</td></tr> <tr valign="top"><td>GD:</td> <td> A logical value incating if the correction for General Dependence have been used or not.</td></tr> <tr valign="top"><td>q:</td> <td> The level of controlled FDR.</td></tr> <tr valign="top"><td>alpha:</td> <td> The level of controlled k-FWER</td></tr> <tr valign="top"><td>alphaprime:</td> <td> The significance level of individual tests</td></tr> <tr valign="top"><td>k:</td> <td> Number of allowed Errors</td></tr> <tr valign="top"><td>J:</td> <td> Number of allowed Jumps</td></tr> </table>
该函数返回一个对象类someMTP.object。 <table summary="R valueblock"> <tr valign="top"> <TD> <code>rej:</ CODE> </ TD> <td>一个逻辑向量,表示相关hypotesis时被拒绝。 </ TD> </ TR> <tr valign="top"> <TD> <code>p:</ P> </ TD> <TD>向量在调用中使用的p值</ TD> </ TR> <tr valign="top"> <TD> <code>ord:</ P> </ TD> <TD>使用的向量进行排序的P-的值(decrasing)。</ TD> < / TR> <tr valign="top"> <TD> <code>MTP:</ P> </ TD> <TD>的“fdrOrd”或“kfweOrd”</ TD> </ TR> <TR VALIGN = “顶”> <TD><code>GD:</ P> </ TD> <td>一个的逻辑值incating如果修正一般依赖已使用或不使用。</ TD> </ TR> <TR VALIGN =“”> <TD> <code>q:</ P> </ TD> <TD>控制FDR的水平。</ TD> </ TR> <tr valign="top"> <TD ><code>alpha:</ P> </ TD> <TD>水平控制K-FWER的</ TD> </ TR> <tr valign="top"> <TD><code>alphaprime: </ P> </ TD> <TD>个别测试的显着性水平</ TD> </ TR> <tr valign="top"> <TD><code>k:</ P> </ TD> <TD>允许的错误数</ TD> </ TR> <tr valign="top"> <TD> <code>J:</ P> </ TD> <TD>允许的跳跃数</ TD > </ TR> </ TABLE>
(作者)----------Author(s)----------
L. Finos and A. Farcomeni
参考文献----------References----------
L. Finos, A. Farcomeni (2010). k-FWER Control without p-value Adjustment, with Application to Detection of Genetic Determinants of Multiple Sclerosis in Italian Twins. Biometrics.
参见----------See Also----------
See also draw
draw
实例----------Examples----------
set.seed(17)
x=matrix(rnorm(60),3,20)
x[,1:10]=x[,1:10]+2 ##variables 1:10 have tests under H1[#变量1:10有H1的测试下]
ts=apply(x,2,function(x) t.test(x)$statistic)
ps=apply(x,2,function(x) t.test(x)$p.value) #compute p-values[计算p-值]
m2=apply(x^2,2,mean) #compute ordering criterion[计算排序标准]
pOrd <- fdrOrd(ps,q=.05,ord=m2) #ordinal Procedure[序程序]
pOrd
draw(pOrd)
sum(p.adjust(ps,method="BH")<=.05) #rejections with BH[拒绝与BH]
kOrd <- kfweOrd(ps,k=5,ord=m2) #ordinal procedure[序程序]
kOrd
kOrdGD <- kfweOrd(ps,k=5,ord=m2,GD=TRUE) #ordinal procedure (any dependence)[序步骤(任何依赖)]
kOrdGD
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|