找回密码
 注册
查看: 515|回复: 0

R语言 sn包 sn.mle.grouped()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 11:20:14 | 显示全部楼层 |阅读模式
sn.mle.grouped(sn)
sn.mle.grouped()所属R语言包:sn

                                         Maximum likelihood estimation of SN and ST distribution for grouped data
                                         最大似然估计的SN和ST分组数据的分布

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Fits a skew-normal (SN) and skew-t (ST) distribution to grouped data  using exact maximum likelihood estimation
适合偏斜正常(SN)和skew-T(ST)的分布分组数据的精确极大似然估计


用法----------Usage----------


sn.mle.grouped(breaks, freq, trace=FALSE, start=NA)
st.mle.grouped(breaks, freq, trace=FALSE, start=NA)



参数----------Arguments----------

参数:breaks
a vector contaning the cut points of the groups, given in ascending order. The last value can be Inf, the first one can be -Inf
浸渗组的切点的一个向量,给出的升序排列。最后一个值可以Inf,第一个是-Inf


参数:freq
a vector containing the observed frequencies corresponding to the intervals defined by breaks; it is required that length(freq)=length(breaks)-1
一个向量,包含由breaks定义的时间间隔对应于所观察到的频率,它被要求length(freq)=length(breaks)-1


参数:trace
logical value which controls printing of the algorithm convergence. If trace=TRUE, details are printed. Default value is FALSE
逻辑控制打印算法的收敛值。如果trace=TRUE,细节被打印出来。默认值是FALSE


参数:start
vector of length  with initial values for the woking parameters: location, log(scale), shape and (for the ST case) log(df). </table>
矢量的长度与沃金参数:位置,log(尺度),形状和(为ST案)log(自由度)的初始值。 </ TABLE>


Details

详细信息----------Details----------

The optimizer optim is used, supplying  the log-likelihood function for grouped data, namely the  multinomial expression whose probabilities are assigned by the SN or ST distribution to the given intervals.
优化optim提供的数似然函数时,分组数据,即多项式的表达,其概率分配的SN或ST分配给定的时间间隔。


值----------Value----------

a list containing the following components:
一个列表,包含以下组件:

<table summary="R valueblock"> <tr valign="top"><td>call</td> <td>  a string containing the calling statement </td></tr> <tr valign="top"><td>dp</td> <td>  for the SN case, a vector of length 3 containing the location, scale and shape parameter; for the ST case, there is an extra parameter, the degress of freedom </td></tr> <tr valign="top"><td>end</td> <td>  a vector of length 3 or 4 containing the working parameters; this vector can be used as a start for a new call to the function </td></tr> <tr valign="top"><td>opt</td> <td>  the list returned by the optimizer optim; see the documentation of this function for explanation of its components. </td></tr></table>
<table summary="R valueblock"> <tr valign="top"> <TD> call</ TD> <td>一个字符串,其中包含调用语句</ TD> </ TR> <TR VALIGN = “顶部”> <TD>dp</运输署“<td>的SN的情况下,含有的位置,大小和形状参数的长度为3的矢量;为ST的情况下,有一个额外的参数,学位的自由</ TD> </ TR> <tr valign="top"> <TD>end </ TD> <td>一个矢量的长度为3或4的工作参数;该向量可作为一个start一个新的呼叫的功能</ TD> </ TR> <tr valign="top"> <TD>opt </ TD> <TD>在返回的列表优化optim;看到这个函数的文档说明它的组件。 </ TD> </ TR> </ TABLE>


背景----------Background----------

Background information on the SN distribution is given by Azzalini (1985); see also Azzalini and Capitanio (1999). For the ST distribution, see Azzalini and Capitanio (2003).
SN分布的背景资料上给出了Azzalini(1985年); Azzalini和卡皮塔尼奥(1999)。对于ST分配,Azzalini和卡皮塔尼奥(2003)。


参考文献----------References----------

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist. 12, 171-178.

Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew-normal distribution. J.Roy.Statist.Soc. B 61, 579&ndash;602.
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry  with emphasis on a multivariate skew-t distribution. J.Roy. Statist. Soc. B 65, 367&ndash;389.


参见----------See Also----------

dsn,  dst, optim, sn.mle
dsn,dst,optim,sn.mle


实例----------Examples----------


data(ais, package="sn")
attach(ais)
breaks<- c(130,160, seq(170, 190, by=2.5), 200, 230)
f <- cut(Ht[sex=="female"], breaks = breaks)
freq <- tabulate(f, length(levels(f)))
b1 <- sn.mle.grouped(breaks, freq)
b2 <- st.mle.grouped(breaks, freq, start=c(b1$end,log(5)))
print(b2$dp)
#[]
us.income <- c(0,seq(from=0.2, to=1.8, by=0.1), 2.0, 2.5, 5.0, Inf)
mid <- (us.income[-1]+us.income[-length(us.income)])/2
mid[length(mid)] <- 6.5
cum.freq<- c(1.78, 3.25, 5.56, 8.16, 11.12, 14.21, 17.54, 20.78, 24.00,
             27.52, 30.77, 34.21, 37.56, 40.70, 44.41, 47.85, 51.22,
             57.60, 72.12, 96.40, 100) / 100
freq<- round(diff(c(0,cum.freq*34660)))
a <- st.mle.grouped(breaks=log(us.income), freq, trace=TRUE,
        start=c(1.2, log(0.9), -2.1, log(20)))
print(a$dp)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-8 10:24 , Processed in 0.022620 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表