cel2ras(SNPMaP)
cel2ras()所属R语言包:SNPMaP
SNPMaP workflows
SNPMaP的工作流程
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Workflow functions to process SNPMaP objects. Called by snpmap().
处理SNPMaP对象的工作流功能。调用方式snpmap()。
用法----------Usage----------
cel2raw(x, cels = x@chps, lowMemory = x@lowMemory, ...)
cel2long(x, cels = x@chps, lowMemory = x@lowMemory, set = x@set, normalize = x@normalize,
log.intensities = x@logInt, ...)
cel2short(x, cels = x@chps, lowMemory = x@lowMemory, set = x@set, normalize = x@normalize,
log.intensities = x@logInt, ...)
cel2ras(x, cels = x@chps, lowMemory = x@lowMemory, set = x@set, normalize = x@normalize,
log.intensities = x@logInt, subtractMismatch = x@useMM, ...)
cel2rasS(x, cels = x@chps, lowMemory = x@lowMemory, set = x@set, normalize = x@normalize,
log.intensities = x@logInt, subtractMismatch = x@useMM, FUN = x@summary, ...)
raw2long(x, lowMemory = x@lowMemory, set = x@set, normalize = x@normalize,
log.intensities = x@logInt, tidy = FALSE, ...)
raw2short(x, lowMemory = x@lowMemory, set = x@set, normalize = x@normalize,
log.intensities = x@logInt, tidy = FALSE, ...)
raw2ras(x, lowMemory = x@lowMemory, set = x@set, normalize = x@normalize,
log.intensities = x@logInt, subtractMismatch = x@useMM, tidy = FALSE, ...)
raw2rasS(x, lowMemory = x@lowMemory, set = x@set, normalize = x@normalize,
log.intensities = x@logInt, subtractMismatch = x@useMM, FUN = x@summary,
tidy = FALSE, ...)
long2short(x, lowMemory = x@lowMemory, tidy = FALSE, ...)
long2ras(x, lowMemory = x@lowMemory, subtractMismatch = x@useMM, tidy = FALSE, ...)
long2rasS(x, lowMemory = x@lowMemory, subtractMismatch = x@useMM, FUN = x@summary,
tidy = FALSE, ...)
short2ras(x, lowMemory = x@lowMemory, subtractMismatch = x@useMM, tidy = FALSE, ...)
short2rasS(x, lowMemory = x@lowMemory, subtractMismatch = x@useMM, FUN = x@summary,
tidy = FALSE, ...)
ras2rasS(x, lowMemory = x@lowMemory, FUN = x@summary, tidy = FALSE, ...)
参数----------Arguments----------
参数:x
An object of class SNPMaP.
对象的类SNPMaP。
参数:cels
character; a vector of the CEL files to be included.
字符的矢量以被包含的CEL文件。
参数:lowMemory
logical; should the SNP data be stored on disk rather than in memory?
逻辑,SNP数据存储在磁盘上,而不是存储在内存吗?
参数:tidy
logical; if the data is stored on disk, should the old FileDoubleMatrix be unlinked?
逻辑,如果数据存储在磁盘上,老“FileDoubleMatrix是unlinked?
参数:set
numeric; the set of probesets to include. See SNPMaP.cdm-package.
数字; probesets要包括的组。见SNPMaP.cdm-package。
参数:normalize
logical; quantile normalize probe intensities across arrays.
逻辑位数标准化探测器阵列之间的强度。
参数:log.intensities
logical; take natural log of probe intensities.
逻辑探针强度的自然对数。
参数:subtractMismatch
logical; subtract mismatch probe intensities if available from perfect match intensities.
逻辑,如果有完美的比赛强度,减去错配探针强度。
参数:FUN
function; function to compute summary statistic for RAS on each chip. See SNPMaP-class.
功能;功能计算汇总统计RAS的,每个芯片上。见SNPMaP-class。
参数:...
additional arguments passed to other workflow and internal functions.
额外的参数传递给其他的工作流程和内部功能。
Details
详细信息----------Details----------
The workflow functions work by calling cel2raw(), raw2long(), long2short(), short2ras(), ras2rasS().
工作流功能的工作,调用cel2raw(),raw2long(),long2short(),short2ras(),ras2rasS()。
值----------Value----------
Object of class SNPMaP.
对象类SNPMaP。
参见----------See Also----------
SNPMaP-package, SNPMaP.cdm-package, SNPMaP-class, snpmap(), norm(), logIntensities()
SNPMaP-package,SNPMaP.cdm-package,SNPMaP-class,snpmap(),norm(),logIntensities()
实例----------Examples----------
## Not run: [#不运行:]
## Getting started[#入门]
## Creates the 'raw' SNPMaP object x on disk with mismatch probes included[#创建“原始”SNPMaP对象x磁盘上的错配探针]
x<-snpmap(useMM=TRUE, RUN='cel2raw', lowMemory=TRUE)
## Print a summary of the SNPMaP object[打印摘要的SNPMaP对象的]
summary(x)
## Add a comment (prints in the summary)[#添加评论(打印摘要)]
comment(x)<-'High and low extreme pools from January'
## View pseudo image to screen for artefacts[#查看屏幕文物的假象]
image(x)
## Plot probe intensities[#图探针强度]
plot(x, FUN=log)
boxplot(x, FUN=log)
## tidy=TRUE removes the FileDoubleMatrix from the old x to keep the disk tidy[#整齐= TRUE消除了从旧的X FileDoubleMatrix保持磁盘整洁]
x<-raw2ras(x, tidy=TRUE)
## Plot Relative Allele Scores[#图相对等位基因成绩的]
plot(x)
## Default tidy=FALSE does not remove the original FileDoubleMatrix from disk[#默认整齐= FALSE不从磁盘上删除原来的FileDoubleMatrix]
## Useful if you want to keep x (no side effects)[#有用的,如果你想保持X(无副作用)]
y<-ras2rasS(x)
## View the first ten rows[#查看前十行]
as.matrix(y[1:10,])
## View a set of SNPs[#查看一组的单核苷酸多态性]
as.matrix(y[c("SNP_A-4192909", "SNP_A-4192918"),])
## Transfer the SNPMaP object from disk to memory[从磁盘到内存】#转移的SNPMaP的的对象]
y<-disk2memory(y, tidy=TRUE)
## Run the analysis again from CEL files to RAS summaries without viewing intermediate stages[#再次运行分析CEL文件的的RAS摘要不观看的中间阶段]
## This time in memory (may require a lot of RAM)[#这个时候在内存中(可能需要大量的RAM)]
z<-snpmap(useMM=TRUE, RUN='cel2rasS', lowMemory=FALSE)
plot(z)
## Get the RAS summary scores as a standard matrix[#取得RAS总结成绩作为标准矩阵]
rasSummaries<-as.matrix(z)
## Read all the sets into a list[#读取到一个列表中的所有套]
allSets<-msnpmap(set=0)
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|