sedist(sna)
sedist()所属R语言包:sna
Find a Matrix of Distances Between Positions Based on Structural Equivalence
找到一个矩阵结构等价基于位置之间的距离
译者:生物统计家园网 机器人LoveR
描述----------Description----------
sedist uses the graphs indicated by g in dat to assess the extent to which each vertex is structurally equivalent; joint.analysis determines whether this analysis is simultaneous, and method determines the measure of approximate equivalence which is used.
sedist使用的图形表示:“g中dat,以评估的程度,每个顶点是结构相同;joint.analysis决定这种分析是否为同声传译,我们可以在听广播或看电视或开会时,和method的确定的措施,这是用来近似等价。
用法----------Usage----------
sedist(dat, g=c(1:dim(dat)[1]), method="hamming",
joint.analysis=FALSE, mode="digraph", diag=FALSE, code.diss=FALSE)
参数----------Arguments----------
参数:dat
a graph or set thereof.
其图形或一组。
参数:g
a vector indicating which elements of dat should be examined.
一个向量的元素dat应检查。
参数:method
one of "correlation", "euclidean", "hamming", or "gamma".
"correlation","euclidean","hamming"或"gamma"之一。
参数:joint.analysis
should equivalence be assessed across all networks jointly (TRUE), or individually within each (FALSE)?
应等价共同进行评估的所有网络(TRUE),或单独在每个(FALSE)?
参数:mode
"digraph" for directed data, otherwise "graph".
"digraph"定向数据,否则"graph"。
参数:diag
boolean indicating whether diagonal entries (loops) should be treated as meaningful data.
布尔值,指示是否有意义的数据应被视为对角元素(循环)。
参数:code.diss
reverse-code the raw comparison values.
反向代码的原料比较值。
Details
详细信息----------Details----------
sedist provides a basic tool for assessing the (approximate) structural equivalence of actors. (Two vertices i and j are said to be structurally equivalent if i->k iff j->k for all k.) SE similarity/difference scores are computed by comparing vertex rows and columns using the measure indicated by method: <ol> correlation: the product-moment correlation
sedist提供了一个基本的工具,评估的(近似)结构等价的演员。 (两个顶点i和j说是结构上相当于对所有的k,如果I-> K当且仅当J-> K。)SE相似/差异分数计算,通过比较顶点的行和列,使用测量<X >:<OL>的相关性:积矩相关
euclidean: the euclidean distance
欧氏:欧氏距离
hamming: the Hamming distance
海明:海明距离
gamma: the gamma correlation </ol> Once these similarities/differences are calculated, the results can be used with a clustering routine (such as equiv.clust) or an MDS (such as cmdscale).
伽马相关的伽玛</ OL>一旦这些相似/差异计算,其结果可用于与聚类程序(如equiv.clust),或MDS(如cmdscale)的。
值----------Value----------
A matrix of similarity/difference scores
矩阵的相似性/差值
注意----------Note----------
Be careful to verify that you have computed what you meant to compute, with respect to similarities/differences. Also, note that (despite its popularity) the product-moment correlation can give rather strange results in some cases.
要小心,以确认你计算过你的意思来计算,与相似/差异。另外,请注意,尽管它的普及积差相关,在某些情况下,可以给比较奇怪的结果。
(作者)----------Author(s)----------
Carter T. Butts <a href="mailto:buttsc@uci.edu">buttsc@uci.edu</a>
参考文献----------References----------
Burt, R.S. (1976). &ldquo ositions in Networks.” Social Forces, 55, 93-122.
参见----------See Also----------
equiv.clust, blockmodel
equiv.clust,blockmodel
实例----------Examples----------
#Create a random graph with _some_ edge structure[创建一个随机的图形_some_边缘结构]
g.p<-sapply(runif(20,0,1),rep,20) #Create a matrix of edge [创建一个矩阵的边缘]
#probabilities[概率]
g<-rgraph(20,tprob=g.p) #Draw from a Bernoulli graph [从伯努利图绘制]
#distribution[分配]
#Get SE distances[SE的距离]
g.se<-sedist(g)
#Plot a metric MDS of vertex positions in two dimensions[绘制的顶点位置在两个方面度量MDS]
plot(cmdscale(as.dist(g.se)))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|