找回密码
 注册
查看: 787|回复: 0

R语言 sna包 rgraph()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 11:01:21 | 显示全部楼层 |阅读模式
rgraph(sna)
rgraph()所属R语言包:sna

                                         Generate Bernoulli Random Graphs
                                         生成伯努利随机图

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

rgraph generates random draws from a Bernoulli graph distribution, with various parameters for controlling the nature of the data so generated.
rgraph生成随机绘制从伯努利图分布,与各种参数的数据,以便生成用于控制的性质。


用法----------Usage----------


rgraph(n, m=1, tprob=0.5, mode="digraph", diag=FALSE, replace=FALSE,
    tielist=NULL, return.as.edgelist=FALSE)



参数----------Arguments----------

参数:n
The size of the vertex set (|V(G)|) for the random graphs
随机图形的顶点集的大小(| V(G)|)


参数:m
The number of graphs to generate
的图形的数目,以产生


参数:tprob
Information regarding tie (edge) probabilities; see below
见下文有关领带(边缘)的概率;


参数:mode
“digraph” for directed data, “graph” for undirected data
定向数据“有向图”,“图”无向数据


参数:diag
Should the diagonal entries (loops) be set to zero?
如果对角线项(循环)设置为0?


参数:replace
Sample with or without replacement from a tie list (ignored if tielist==NULL
样品或不更换领带列表(如果tielist==NULL忽略


参数:tielist
A vector of edge values, from which the new graphs should be bootstrapped
的边缘值的向量,从该新的图表应自举


参数:return.as.edgelist
logical; should the resulting graphs be returned in edgelist form?
逻辑,生成的图表在EdgeList,在该列表的形式返回?


Details

详细信息----------Details----------

rgraph is a reasonably versatile routine for generating random network data.  The graphs so generated are either Bernoulli graphs (graphs in which each edge is a Bernoulli trial, independent conditional on the Bernoulli parameters), or are bootstrapped from a user-provided edge distribution (very handy for CUG tests).  In the latter case, edge data should be provided using the tielist argument; the exact form taken by the data is irrelevant, so long as it can be coerced to a vector.  In the former case, Bernoulli graph probabilities are set by the tprob argument as follows:  <ol> If tprob contains a single number, this number is used as the probability of all edges.
rgraph是一个合理的通用程序产生随机的网络数据。如此产生的图表是伯努利曲线图(图形中,每个边缘是一个伯努利试验的,独立的条件上的伯努利参数),或从一个用户提供的边缘分布(非常方便CUG测试)自举。在后者的情况下,边缘数据应提供使用tielist参数;数据所采取的确切形式是无关紧要的,只要它可以强制转换为一个向量。在前一种情况下,伯努利图概率tprob参数如下:<OL>如果tprob包含一个单一的数字,这个数字是所有边的概率。




If tprob contains a vector, each entry is assumed to correspond to a separate graph (in order).  Thus, each entry is used as the probability of all edges within its corresponding graph.
如果tprob包含一个向量,每个条目都被假定为对应于一个单独的图形(按顺序)。因此,每个条目是用来作为其相应的曲线图内的所有边缘的概率。




If tprob contains a matrix, then each entry is assumed to correspond to a separate edge.  Thus, each entry is used as the probability of its associated edge in each graph which is generated.
如果tprob包含一个矩阵,然后每个条目被假定为对应于一个单独的边缘。因此,每个条目被用作生成的每一个曲线图,这是在其相关联的边缘的概率。




Finally, if tprob contains a three-dimensional array, then each entry is assumed to correspond to a particular edge in a particular graph, and is used as the associated probability parameter. </ol>
最后,如果tprob包含的三维阵列,然后每个条目被假定为对应于在一个特定的图形的特定的边缘,并且被用作相关联的概率参数。 </ OL>

Finally, note that rgraph will symmetrize all generated networks if mode is set to &ldquo;graph&rdquo; by copying down the upper triangle.  The lower half of tprob, where applicable, must still be specified, however.
最后,请注意,rgraph如果mode设置为“图”复制下来的上三角对称生成的所有网络。的下半部分tprob,在适用的情况下,仍然必须指定,但。


值----------Value----------

A graph stack
一个图形堆栈


注意----------Note----------

The famous mathematicians referenced in this man page now have misspelled names, due to R's difficulty with accent marks.  
现在这名男子页面中引用的著名数学家有拼写错误的名字,由于R的带重音符号的难度。


(作者)----------Author(s)----------


Carter T. Butts <a href="mailto:buttsc@uci.edu">buttsc@uci.edu</a>



参考文献----------References----------

Erdos, P. and Renyi, A.  (1960).  &ldquo;On the Evolution of Random Graphs.&rdquo;  Public Mathematical Institute of Hungary Academy of Sciences, 5:17-61.
Wasserman, S., and Faust, K.  (1994).  Social Network Analysis: Methods and Applications.  Cambridge: Cambridge University Press.

参见----------See Also----------

rmperm, rgnm, rguman
rmperm,rgnm,rguman


实例----------Examples----------



#Generate three graphs with different densities[生成三个具有不同密度的图]
g<-rgraph(10,3,tprob=c(0.1,0.9,0.5))

#Generate from a matrix of Bernoulli parameters[从伯努利参数的矩阵生成]
g.p<-matrix(runif(25,0,1),nrow=5)
g<-rgraph(5,2,tprob=g.p)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-6-6 13:31 , Processed in 0.026242 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表