flowbet(sna)
flowbet()所属R语言包:sna
Calculate Flow Betweenness Scores of Network Positions
计算流量的居间成绩的网络位置
译者:生物统计家园网 机器人LoveR
描述----------Description----------
flowbet takes one or more graphs (dat) and returns the flow betweenness scores of positions (selected by nodes) within the graphs indicated by g. Depending on the specified mode, flow betweenness on directed or undirected geodesics will be returned; this function is compatible with centralization, and will return the theoretical maximum absolute deviation (from maximum) conditional on size (which is used by centralization to normalize the observed centralization score).
flowbet需要一个或多个图形(dat),并返回流介分数的位置(在图表选择nodes),表示g。根据指定的模式,流量介向或无向的测地线,将返回此功能是兼容centralization,将返回理论上的最大绝对偏差(最大)有条件的大小(它是由centralization标准化集中观察到的得分)。
用法----------Usage----------
flowbet(dat, g = 1, nodes = NULL, gmode = "digraph", diag = FALSE,
tmaxdev = FALSE, cmode = "rawflow", rescale = FALSE,
ignore.eval = FALSE)
参数----------Arguments----------
参数:dat
one or more input graphs.
一个或多个输入图表。
参数:g
integer indicating the index of the graph for which centralities are to be calculated (or a vector thereof). By default, g=1.
整数,指示其中中心性计为(或它们的向量)的曲线图的索引。默认情况下,g= 1。
参数:nodes
vector indicating which nodes are to be included in the calculation. By default, all nodes are included.
矢量的指示哪些节点要被包括在计算中。默认情况下,所有的节点都包括在内。
参数:gmode
string indicating the type of graph being evaluated. digraph indicates that edges should be interpreted as directed (with flows summed over directed dyads); graph indicates that edges are undirected (with only undirected pairs considered). gmode is set to digraph by default.
的图表类型的字符串,表示正在评估中。 digraph表明边缘应被解释为指示(总结以上指示的二价基与流量);graph表明边缘是无向(与只有无向对考虑)。 gmode默认情况下被设置成digraph。
参数:diag
boolean indicating whether or not the diagonal should be treated as valid data. Set this true if and only if the data can contain loops. diag is FALSE by default.
布尔值,表示是否对角线应被视为有效的数据。设置这是真的,当且仅当数据可以包含循环。 diag是FALSE默认情况下。
参数:tmaxdev
boolean indicating whether or not the theoretical maximum absolute deviation from the maximum nodal centrality should be returned. By default, tmaxdev==FALSE.
布尔值,表示是否从最大的节点的中心性的理论最大绝对偏差应返回。默认情况下,tmaxdev==FALSE。
参数:cmode
one of rawflow, normflow, or fracflow (see below).
rawflow,normflow或fracflow(见下文)。
参数:rescale
if true, centrality scores are rescaled such that they sum to 1.
如果为true,中心的分数重新调整,他们总结到1。
参数:ignore.eval
logical; ignore edge values when computing maximum flow (alternately, edge values will be assumed to carry capacity information)?
逻辑,忽略边缘值时,计算最大流量(交替,边值将被进行容量信息)?
Details
详细信息----------Details----------
The (“raw,” or unnormalized) flow betweenness of a vertex, v in V(G), is defined by Freeman et al. (1991) as
(“原始”,或者非标准化的)流量介的一个顶点,v in V(G),是指由Freeman等。 (1991)
C_F(v) = sum( f(i,j,G) - f(i,j,G\v), i,j: i!=j,i!=v,j!=v ),</i>
C_F(V)= SUM(F(I,J,G) - F(I,J,G \ V),I,J:我!= j时,我= V,J = V),</ I >
The above flow betweenness measure is computed by flowbet when cmode=="rawflow". In some cases, it may be desirable to normalize the raw flow betweenness by the total maximum flow among third parties (including v); this leads to the following normalized flow betweenness measure:
上述流程介措施计算的flowbetcmode=="rawflow"。在某些情况下,这可能是可取的标准化的原料流介由第三方之间的总的最大流量(包括v),这导致以下归流介措施:
C'_F(v) = sum( f(i,j,G) - f(i,j,G\v), i,j: i!=j,i!=v,j!=v ) / sum( f(i,j,G), i,j: i!=j,i!=v,j!=v ).</i>
C_F(V)= SUM(F(I,J,G) - F(I,J,G \ V),I,J:我!= j时,我!= V,J = V)/总和(F(I,J,G),I,J:我!= j时,我= V,J = V)。</ I>
Finally, it may be noted that the above normalization (from Freeman et al. (1991)) is rather different from that used in the definition of shortest-path betweenness, which normalizes within (rather than across) third-party dyads. A third flow betweenness variant has been suggested by Koschutzki et al. (2005) based on a normalization of this type:
最后,它可以指出,上述归一化(从Freeman等人(1991)),而从最短路径介数,该归一内(而不是跨)第三方的二价基的定义中所用的不同。第三个流量介变种已建议由Koschutzki等。 (2005),这种类型的归一化的基础上:
C''_F(v) = sum( (f(i,j,G) - f(i,j,G\v)) / f(i,j,G), i,j: i!=j,i!=v,j!=v ),</i>
C _F(V)= SUM((F(I,J,G) - F(I,J,摹\ V))/ F(I,J,G),I,J:我= J,我= V,J = V),</ I>
值----------Value----------
A vector of centrality scores.
一个向量的核心成绩。
(作者)----------Author(s)----------
Carter T. Butts <a href="mailto:buttsc@uci.edu">buttsc@uci.edu</a>
参考文献----------References----------
Freeman, L.C.; Borgatti, S.P.; and White, D.R. (1991). “Centrality in Valued Graphs: A Measure of Betweenness Based on Network Flow.” Social Networks, 13(2), 141-154.
Koschutzki, D.; Lehmann, K.A.; Peeters, L.; Richter, S.; Tenfelde-Podehl, D.; Zlotowski, O. (2005). “Centrality Indices.” In U. Brandes and T. Erlebach (eds.), Network Analysis: Methodological Foundations. Berlin: Springer.
参见----------See Also----------
betweenness, maxflow
betweenness,maxflow
实例----------Examples----------
g<-rgraph(10) #Draw a random graph[绘制一个随机的图形]
flowbet(g) #Raw flow betweenness[原始流量介]
flowbet(g,cmode="normflow") #Normalized flow betweenness[归流介]
g<-g*matrix(rpois(100,4),10,10) #Add capacity constraints[增加容量的限制]
flowbet(g) #Note the difference![请注意区别!]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|