sme.list(sme)
sme.list()所属R语言包:sme
Carry out mulitple independent smoothing-splines mixed-effects model fits simultaneously
开展多张独立的平滑样条混合效应模型拟合同时
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Carry out multiple independent smoothing-splines mixed-effects model fits simultaneously
开展多个独立的平滑样条混合效应模型拟合同时
用法----------Usage----------
## S3 method for class 'list'
sme(object,tme,ind,verbose=F,lambda.mu=NULL,lambda.v=NULL,maxIter=500,
knots=NULL,zeroIntercept=F,deltaEM=1e-3,deltaNM=1e-3,criteria="AICc",
numberOfThreads=2,...)
参数----------Arguments----------
参数:object
a list of vectors of observations
在观测值向量的列表
参数:tme
a list of vectors of time points corresponding to the observations in object
矢量的时间点的列表对应于观测在object
参数:ind
a list of factors (or vectors that can be coerced to factors) of subject identifiers corresponding to the observations in object
列表的因素(或向量,可以被强迫的因素)的主体标识符对应的观测object
参数:verbose
if TRUE, debug information will be output while fitting the model(s)
如果TRUE,调试信息将被输出,而拟合模型(S)
参数:lambda.mu
either a single smoothing parameter to be used for the fixed-effect function for all fits, or a vector of smoothing parameters, one for each fit, or NULL if Nelder-Mead search should be used to find the optimal values for this and lambda.v for all fits
一个单一的平滑参数要用于函数可用于所有配合的固定效应,或向量的平滑化参数,各装配一个或NULL如果内尔德-米德搜索应该被用来找到的最佳值这和lambda.v适合
参数:lambda.v
either a single smoothing parameter to be used for the random-effects functions for all fits, or a vector of smoothing parameters, one for each fit, or NULL if Nelder-Mead search should be used to find the optimal values for this and lambda.v for all fits
无论是单一的平滑参数被用于随机效应功能的所有的配合,或向量的平滑化参数,一个用于每个拟合,或NULL如果内尔德-米德搜索应该被用来找到的最佳值这和lambda.v适合
参数:maxIter
maximum number of iterations to be performed for the EM algorithm
EM算法来执行的最大迭代次数
参数:knots
location of spline knots. If NULL, an incidence matrix representation will be used. See "Details"
花键结的位置。如果NULL,关联矩阵表示将使用。请参阅“详细信息”
参数:zeroIntercept
experimental feature. If TRUE, the fitted values of the fixed- and random-effects functions at the intercept will be zero
实验功能。如果TRUE,拟合的截距的固定和随机效应功能之值将是零
参数:deltaEM
convergence tolerance for the EM algorithm
EM算法的收敛公差
参数:deltaNM
(relative) convergence tolerance for the Nelder-Mead optimisation
(相对)的收敛公差内尔德米德优化
参数:criteria
one of "AICc", "AIC", "BICN" or "BICn" indicating which criteria to use to score a particular combination of lambda.mu and lambda.v in the Nelder-Mead search
"AICc","AIC","BICN"或"BICn"表示使用哪些标准得分的特定组合lambda.mu和lambda.v在内尔德 - 米德搜索
参数:numberOfThreads
The number of threads to use to fit the multiple smoothing-splines mixed-effects models simultaneously
要使用的线程数,以适应多种平滑样条混合效应模型同时
参数:...
additional arguments, currently not used
额外的参数,当前未使用
Details
详细信息----------Details----------
The default behaviour is to use an incidence matrix representation for the smoothing-splines. This works well in most situations but may incur a high computational cost when the number of distinct time points is large, as may be the case for irregularly sampled data. Alternatively, a basis projection can be used by giving a vector of knots of length (much) less than the number of distinct time points.
默认行为是使用的发病率的平滑样条的矩阵表示。在大多数情况下,这工作得很好,但可能会产生较高的计算成本时不同时间点的数量很大,如可能的情况下为不规则采样数据。可选地,可使用的基础突起通过给人一种向量的knots长度(多)的数目小于不同的时间点。
值----------Value----------
A list of objects of class sme. See smeObject for the components of the fit and plot.sme for visualisation options
列表对象类sme。 smeObject的组件的配合和plot.sme可视化选项
(作者)----------Author(s)----------
Maurice Berk <a href="mailto:maurice.berk01@imperial.ac.uk">maurice.berk01@imperial.ac.uk</a>
参考文献----------References----------
参见----------See Also----------
smeObject, sme, sme.data.frame,
smeObject,sme,sme.data.frame,
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|