sme.data.frame(sme)
sme.data.frame()所属R语言包:sme
Smoothing-splines mixed-effects model fit(s) from a data.frame object
平滑样条混合效应模型拟合从数据框对象(S)
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Carry out one or more independent smoothing-splines mixed-effects model fits simultaneously
开展一个或多个独立的平滑样条混合效应模型拟合同时
用法----------Usage----------
## S3 method for class 'data.frame'
sme(object,tme,ind,verbose=F,lambda.mu=NULL,lambda.v=NULL,maxIter=500,
knots=NULL,zeroIntercept=F,deltaEM=1e-3,deltaNM=1e-3,criteria="AICc",...)
参数----------Arguments----------
参数:object
a data.frame with named variables y, tme, ind and, optionally, variable. The first three represent observations, corresponding time points and correpsonding subjects respectively. If variable is missing then these are used to carry out a single model fit. If variable is present then it denotes variable membership, and a separate smoothing-splines mixed-effects model is fit to each unique variable
一个data.frame命名的变量y,tme,ind,variable。前三个代表的意见,相应的时间点,correpsonding的主题分别。 variable如果丢失,则这些被用来进行单模型拟合。如果variable是存在,那么它表示变量的成员,和一个独立的平滑样条混合效应模型是适合每一个独特的可变
参数:tme
for consistency with the generic function. Ignored in this case
一致性的通用功能。在这种情况下,忽略
参数:ind
for consistency with the generic function. Ignored in this case
一致性的通用功能。在这种情况下,忽略
参数:verbose
if TRUE, debug information will be output while fitting the model(s)
如果TRUE,调试信息将被输出,而拟合模型(S)
参数:lambda.mu
in the case of carrying out a single model fit, either a smoothing parameter to be used for the fixed-effect function or NULL if the optimal values for this and lambda.v should be found according to criteria using Nelder-Mead search. For the case of multiple model fits, either a single smoothing parameter to be used for all fits, or a vector of smoothing parameters, one for each fit, or NULL if Nelder-Mead search should be used to find the optimal values for this and lambda.v for all variables
在一个单一的模型拟合的情况下,无论是平滑参数可以用于固定效果功能或NULL,如果这和lambda.v应根据<X的最佳值>使用内尔德米德搜索。对于多模型拟合的情况下,无论是单一的平滑参数被用于所有的配合,或向量的平滑化参数,一个用于每个拟合,或criteria如果内尔德-米德搜索找到最佳的,应该使用这和NULL的所有变量的值
参数:lambda.v
in the case of carrying out a single model fit, either a smoothing parameter to be used for the random-effects functions or NULL if the optimal values for this and lambda.mu should be found according to criteria using Nelder-Mead search. For the case of multiple model fits, either a single smoothing parameter to be used for all fits, or a vector of smoothing parameters, one for each fit, or NULL if Nelder-Mead search should be used to find the optimal values for this and lambda.mu for all variables
在的情况下进行,可以是平滑参数被用于随机效应功能或一个单一的模型拟合NULL如果这和lambda.mu应发现根据<X的最佳值>使用内尔德米德搜索。对于多模型拟合的情况下,无论是单一的平滑参数被用于所有的配合,或向量的平滑化参数,一个用于每个拟合,或criteria如果内尔德-米德搜索找到最佳的,应该使用这和NULL的所有变量的值
参数:maxIter
maximum number of iterations to be performed for the EM algorithm
EM算法来执行的最大迭代次数
参数:knots
location of spline knots. If NULL, an incidence matrix representation will be used. See "Details"
花键结的位置。如果NULL,关联矩阵表示将使用。请参阅“详细信息”
参数:zeroIntercept
experimental feature. If TRUE, the fitted values of the fixed- and random-effects functions at the intercept will be zero
实验功能。如果TRUE,拟合的截距的固定和随机效应功能之值将是零
参数:deltaEM
convergence tolerance for the EM algorithm
EM算法的收敛公差
参数:deltaNM
(relative) convergence tolerance for the Nelder-Mead optimisation
(相对)的收敛公差内尔德米德优化
参数:criteria
one of "AICc", "AIC", "BICN" or "BICn" indicating which criteria to use to score a particular combination of lambda.mu and lambda.v in the Nelder-Mead search
"AICc","AIC","BICN"或"BICn"表示使用哪些标准得分的特定组合lambda.mu和lambda.v在内尔德 - 米德搜索
参数:...
additional arguments used when carrying out multiple fits, specifically numberOfThreads indicating the number of threads used to carry out the multiple fits in parallel. See sme.list for details
额外的参数时使用了多种适合,特别是numberOfThreads表示用于开展多种适合并行的线程数。 sme.list的详细信息,
Details
详细信息----------Details----------
The default behaviour is to use an incidence matrix representation for the smoothing-splines. This works well in most situations but may incur a high computational cost when the number of distinct time points is large, as may be the case for irregularly sampled data. Alternatively, a basis projection can be used by giving a vector of knots of length (much) less than the number of distinct time points.
默认行为是使用的发病率的平滑样条的矩阵表示。在大多数情况下,这工作得很好,但可能会产生较高的计算成本时不同时间点的数量很大,如可能的情况下为不规则采样数据。可选地,可使用的基础突起通过给人一种向量的knots长度(多)的数目小于不同的时间点。
值----------Value----------
In the case of a single model fit, an object of class sme. For multiple model fits, a list of such objects. See smeObject for the components of the fit and plot.sme for visualisation options
在一个单一的模型拟合的情况下,一个对象的类sme。对于多模型拟合,这样的对象的列表。 smeObject的组件的配合和plot.sme可视化选项
(作者)----------Author(s)----------
Maurice Berk <a href="mailto:maurice.berk01@imperial.ac.uk">maurice.berk01@imperial.ac.uk</a>
参考文献----------References----------
参见----------See Also----------
smeObject, sme, sme.list, plot.sme
smeObject,sme,sme.list,plot.sme
实例----------Examples----------
data(MTB)
system.time(fits <- sme(MTB,numberOfThreads=1))
sapply(fits,logLik)
system.time(fits <- sme(MTB,numberOfThreads=10))
sapply(fits,logLik)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|