找回密码
 注册
查看: 374|回复: 0

R语言 smcUtils包 Unbiased resampling()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 10:19:31 | 显示全部楼层 |阅读模式
Unbiased resampling(smcUtils)
Unbiased resampling()所属R语言包:smcUtils

                                        Resampling functions
                                         重采样功能

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

A set of resampling functions with unbiased number of replicates.
重采样功能不带偏见的一些重复的一组。


用法----------Usage----------


multinomial.resample(weights, num.samples = length(weights))
residual.resample(   weights, num.samples = length(weights), resample.function=multinomial.resample)
stratified.resample( weights, num.samples = length(weights))
systematic.resample( weights, num.samples = length(weights))
branching.resample(  weights, num.samples = length(weights))



参数----------Arguments----------

参数:weights
a vector of normalized weights
一个归一化的权重向量


参数:num.samples
the number of samples to return (for "branching.resample",  "num.samples" is the expected number of samples as the actual number is random)   
的样本数返回(branching.resample,num.samples是预期数目的样本的实际数目是随机的)


参数:resample.function
the resampling function to use on the remainder
使用其余的重采样功能


Details

详细信息----------Details----------

'multinomial.resample' samples component i with probability "weights[i]",  repeats this sampling "num.samples" times, and returns indices for the sampled components.
“multinomial.resample的样品组分i的概率权重[I],重复这采样的num.samples,”时间,并返回指数的采样组件。

'residual.resample' deterministically copies "floor(weights)" number of  each component and then performs "resample.function" on the remainder.
residual.resample确定性副本的地板(重量)的各成分的数量,然后执行,其余的的resample.function。

"stratified.resample" draws "num.samples" uniform random variables on the  ((i-1)/num.samples,i/num.samples) intervals of (0,1). It then uses the inverse.cdf.weights function to determine which components to sample.
stratified.resample绘制num.samples(第(i-1)/ num.samples的i / num.samples)(0,1)的间隔均匀的随机变量。然后使用inverse.cdf.weights的功能,以确定哪些组件样品。

"systematic.resample" draws 1 uniform random variable on (0,1/num.samples), builds a sequence of "num.samples" numbers by sequentially adding "1/num.samples", and then uses "inverse.cdf.weights" to determine which components to  sample.
systematic.resample“吸引1均匀分布的随机变量(0,1 / num.samples),依次添加1 / num.samples”,建立了一个序列num.samples的数量,然后使用 inverse.cdf.weights“以确定哪些组件进行采样。

"branching.resample" deterministically copies "floor(weights)" number of components and then draws another component i with probability equal to the residual for  that component. Note: the actual number of components after resampling is random.
“branching.resample确定性的副本的地板(重量)的元件数量,然后绘制另一个组分i的概率等于为该组件的残余。注:组件后重采样的实际数量是随机的。


值----------Value----------

Returns a vector of length "num.samples" with indices for sampled components.
返回一个向量的长度“num.samples的”指数的采样组件。


(作者)----------Author(s)----------


Jarad Niemi



参考文献----------References----------

Schemes for Particle Filtering. _Proceedings of the 4th International Symposium  on Image and Signal Processing and Analysis_
Carpenter, J., Clifford, P., Fearnhead, P. An improved particle filter for  non-linear problems. _IEEE proceedings - Radar, Sonar and Navigation_ *146*, 2-7

参见----------See Also----------

resample,renormalize.weights, inverse.cdf.weights,rep2id
resample,renormalize.weights,inverse.cdf.weights,rep2id


实例----------Examples----------


ws = renormalize.weights(runif(10))
multinomial.resample(ws)
residual.resample(ws,resample.function=stratified.resample)         
stratified.resample(ws,15)
systematic.resample(ws)
branching.resample(ws)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-29 04:19 , Processed in 0.022455 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表