smacofSym(smacof)
smacofSym()所属R语言包:smacof
Symmetric smacof
对称smacof
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Multidimensional scaling (stress minimization: SMACOF) on symmetric dissimilarity matrix.
多维的缩放(应力最小化:SMACOF)对称的相异度矩阵。
用法----------Usage----------
smacofSym(delta, ndim = 2, weightmat = NULL, init = NULL, metric = TRUE, ties = "primary", verbose = FALSE, relax = FALSE, modulus = 1, itmax = 1000, eps = 1e-06)
参数----------Arguments----------
参数:delta
Either a symmetric dissimilarity matrix or an object of class "dist"
无论是对称的相异矩阵或对象类"dist"
参数:ndim
Number of dimensions
的维数
参数:weightmat
Optional matrix with dissimilarity weights
可选相异的权重矩阵
参数:init
Matrix with starting values for configurations (optional)
矩阵的初始值配置(可选)
参数:metric
If FALSE non-metric MDS is performed
如果FALSE非度量MDS进行
参数:ties
Tie specification for non-metric MDS only: "primary", "secondary", or "tertiary"
非度量MDS领带规格:"primary","secondary"或"tertiary"
参数:verbose
If TRUE, intermediate stress is printed out
如果TRUE,中间主应力打印出来
参数:relax
If TRUE, block relaxation is used for majorization
如果TRUE,块松弛用于优超
参数:modulus
Number of smacof iterations per monotone regression call
每单调回归呼叫smacof迭代的次数
参数:itmax
Maximum number of iterations
最大迭代次数
参数:eps
Convergence criterion
收敛准则
Details
详细信息----------Details----------
This is the simplest MDS-SMACOF version of the package. It solves the stress target function for symmetric dissimiliby means of the majorization approach (SMACOF). The main output are the coordinates in the low-dimensional space (configurations; conf). The function also returns the point stress, i.e. the larger the contribution of a point to the total stress, the worse the fit (see also plot.smacof.
这是最简单的的MDS-SMACOF版本的软件包。它解决了意味着的优超的方法(SMACOF)的的压力目标的对称dissimiliby功能的。的主要输出是低维空间中的坐标(配置;conf)。该函数也返回点的压力,即较大的一个点的总应力的贡献,更糟糕的配合(见plot.smacof。
值----------Value----------
参数:delta
Observed dissimilarities
观察到的不同点
参数:obsdiss
Observed dissimilarities, normalized
观察到的不同点,归
参数:confdiss
Configuration dissimilarities
配置异同
参数:conf
Matrix of final configurations
矩阵的最终配置
参数:stress.m
Stress value for metric MDS
为公制MDS的应力值
参数:stress.nm
Stress value for non-metric MDS (if computed)
非度量MDS的应力值(如果计算)
参数:spp
Stress per point
每点压力
参数:ndim
Number of dimensions
的维数
参数:model
Type of smacof model
smacof模型的类型
参数:niter
Number of iterations
迭代次数。
参数:nobj
Number of objects
对象的数量
(作者)----------Author(s)----------
Jan de Leeuw and Patrick Mair
参考文献----------References----------
The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/i03/
参见----------See Also----------
smacofConstraint, smacofRect, smacofIndDiff, smacofSphere.primal, smacofSphere.dual, plot.smacof
smacofConstraint,smacofRect,smacofIndDiff,smacofSphere.primal,smacofSphere.dual,plot.smacof
实例----------Examples----------
## simple SMACOF solution for kinship data[#的简单SMACOF解决方案亲属关系数据]
data(kinshipdelta)
res <- smacofSym(kinshipdelta)
res
summary(res)
plot(res)
plot(res, type = "p", label.conf = list(TRUE, 3, "darkgray"), pch = 25, col = "red")
## 3D nonmetric SMACOF solution for trading data[#3D的非测量SMACOF解决方案的交易数据]
data(trading)
res <- smacofSym(trading, ndim = 3, metric = FALSE, ties = "secondary")
res
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|