mergeComplexes(apComplex)
mergeComplexes()所属R语言包:apComplex
Iteratively combine columns in initial PCMG estimate
反复结合列初始PCMG估计
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Repeatedly applies the function LCdelta to make combinations of columns in the affiliation matrix representing the protein complex membership graph (PCMG) for AP-MS data.
反复适用的功能联系代表的蛋白复合物的成员图(PCMG)AP-MS的数据矩阵的列组合LCdelta。
用法----------Usage----------
参数----------Arguments----------
参数:bhmax
Initial complex estimates coming from bhmaxSubgraph
初始复杂的估计,从bhmaxSubgraph
参数:adjMat
Adjacency matrix of bait-hit data from an AP-MS experiment. Rows correspond to baits and columns to hits.
诱饵命中从一个AP-MS实验数据的邻接矩阵。行对应到点击的诱饵和列。
参数:VBs
VBs is an optional vector of viable baits.
VBs是一个可行的诱饵可选向量。
参数:VPs
VPs is an optional vector of viable prey.
VPs是可行的猎物可选向量。
参数:simMat
An optional square matrix with entries between 0 and 1. Rows and columns correspond to the proteins in the experiment, and should be reported in the same order as the columns of adjMat. Higher values in this matrix are interpreted to mean higher similarity for protein pairs.
0和1项之间的一个可选的方阵。行和列分别对应在实验中的蛋白质,并应在相同的顺序作为adjMat列报。解释在这个矩阵的值越高,意味着更高的蛋白质对相似。
参数:sensitivity
Believed sensitivity of AP-MS technology.
相信AP-MS技术的灵敏度。
参数:specificity
Believed specificity of AP-MS technology.
相信AP-MS技术的特异性。
参数:Beta
Optional additional parameter for the weight to give data in simMat in the logistic regression model.
可选为重的额外的参数给数据simMat在logistic回归模型。
参数:commonFrac
This is the fraction of baits that need to be overlapping for a complex combination to be considered.
这是诱饵,需要被认为是一个复杂的组合重叠的部分。
参数:wsVal
A numeric. This is the value assigned to the work-space in the call to fisher.test.
一个数字。这是分配调用fisher.test,工作空间的价值。
Details
详情----------Details----------
The local modeling algorithm for AP-MS data described by Scholtens and Gentleman (2004) and Scholtens, Vidal, and Gentleman (2005) uses a two-component measure of protein complex estimate quality, namely P=LxC. Columns in cMat represent individual complex estimates. The algorithm works by starting with a maximal BH-complete subgraph estimate of cMat, and then improves the estimate by combining complexes such that P=LxC increases.
由Scholtens和绅士描述AP-MS数据(2004年)和Scholtens,维达尔和绅士(2005年)的地方建模算法使用双组分的蛋白复合物的估计质量的措施,即p = LXC。 cMat列代表个别复杂概算。该算法的工作原理是一个最大的BH完成cMat子估计开始,然后提高,P = LXC增加等相结合的复合物的估计。
By default commonFrac is set relatively high at 2/3. This means that some potentially reasonable complex combinations could be missed. For smaller data sets, users may consider decreasing the fraction. For larger data sets, this may cause a large increase in computation time.
默认情况下,commonFrac设置比较高,在2/3。这意味着,可能错过了一些潜在的合理的复杂组合。对于较小的数据集,用户可以考虑降低分数。对于更大的数据集,这可能会导致计算时间的大量增加。
值----------Value----------
A list of character vectors containing the names of the proteins in the estimated complexes.
字符向量含有估计复合物的蛋白质的名称列表。
作者(S)----------Author(s)----------
Denise Scholtens
参考文献----------References----------
interaction data. Statistical Applications in Genetics and Molecular Biology 3, Article 39 (2004).
networks. Bioinformatics 21, 3548-3557 (2005).
参见----------See Also----------
bhmaxSubgraph,findComplexes
bhmaxSubgraph,findComplexes
举例----------Examples----------
data(apEX)
PCMG0 <- bhmaxSubgraph(apEX)
PCMG1 <- mergeComplexes(PCMG0,apEX,sensitivity=.7,specificity=.75)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|