CorrAn(SimultAnR)
CorrAn()所属R语言包:SimultAnR
Correspondence Analysis
对应分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The CorrAn function computes the correspondence analysis of the selected data.
CorrAn函数计算所选数据的对应分析。
用法----------Usage----------
CorrAn(data, sr = NA, sc = NA, nd = 2, dp = 2)
参数----------Arguments----------
参数:data
Data set
数据集
参数:sr
Indices of supplementary rows
行补充指标
参数:sc
Indices of supplementary columns
补充列指数
参数:nd
Number of dimensions in results
在结果中的维数
参数:dp
Number of digits in results
在结果中位数号码
Details
详细信息----------Details----------
The options sr and sc allow supplementary rows and columns to be specified.
的选项sr和sc可以补充到指定的行和列。
值----------Value----------
<table summary="R valueblock"> <tr valign="top"><td>totalin </td> <td> Total inertia </td></tr> <tr valign="top"><td>eig </td> <td> Eigenvalues </td></tr> <tr valign="top"><td>resin </td> <td> Results of inertia </td></tr> <tr valign="top"><td>resi </td> <td> Results of active rows </td></tr> <tr valign="top"><td>resj </td> <td> Results of active columns </td></tr> <tr valign="top"><td>resisr </td> <td> Results of supplementary rows </td></tr> <tr valign="top"><td>resjsc </td> <td> Results of supplementary columns </td></tr> <tr valign="top"><td>X </td> <td> Matrix X </td></tr> <tr valign="top"><td>totalk </td> <td> Total of data table </td></tr> <tr valign="top"><td>I </td> <td> Number of active rows </td></tr> <tr valign="top"><td>namei </td> <td> Names of active rows </td></tr> <tr valign="top"><td>fi </td> <td> Marginal of active rows </td></tr> <tr valign="top"><td>Fs </td> <td> Projections of active rows </td></tr> <tr valign="top"><td>d2i </td> <td> Chi-square distance of active rows to their average </td></tr> <tr valign="top"><td>J </td> <td> Number of active columns </td></tr> <tr valign="top"><td>namej </td> <td> Names of active columns </td></tr> <tr valign="top"><td>fj </td> <td> Marginal of active columns </td></tr> <tr valign="top"><td>Gs </td> <td> Projections of active columns </td></tr> <tr valign="top"><td>d2j </td> <td> Chi-square distance of active columns to their average </td></tr> <tr valign="top"><td>Isr </td> <td> Number of supplementary rows </td></tr> <tr valign="top"><td>nameisr </td> <td> Names of supplementary rows </td></tr> <tr valign="top"><td>fisr </td> <td> Marginal of supplementary rows </td></tr> <tr valign="top"><td>Fssr </td> <td> Projections of supplementary rows </td></tr> <tr valign="top"><td>d2isr </td> <td> Chi-square distance of supplementary rows to the average </td></tr> <tr valign="top"><td>Xsr </td> <td> Matrix X for supplementary rows </td></tr> <tr valign="top"><td>Jsc </td> <td> Number of supplementary columns </td></tr> <tr valign="top"><td>namejsc </td> <td> Names of supplementary columns </td></tr> <tr valign="top"><td>fjsc </td> <td> Marginal of supplementary columns </td></tr> <tr valign="top"><td>Gssc </td> <td> Projections of supplementary columns </td></tr> <tr valign="top"><td>d2jsc </td> <td> Chi-square distance of supplementary columns to the average</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> totalin </ TD> <TD>总惯量</ TD> </ TR> <tr valign="top"> <TD> eig </ TD> <TD>特征值</ TD> </ TR> <tr valign="top"> <TD>resin </ TD> <TD>的惯性结果</ TD> </ TR> <tr valign="top"> <TD>resi </ TD> <TD>活动行的结果</ TD> </ TR> <TR VALIGN =“顶” > <TD> resj </ TD> <TD>结果的活动列</ TD> </ TR> <tr valign="top"> <TD> resisr </ TD> <TD >结果行补充</ TD> </ TR> <tr valign="top"> <TD>resjsc </ TD> <TD>结果的补充列</ TD> </ TR> <TR VALIGN =“”> <TD>X </ TD> <TD>矩阵X </ TD> </ TR> <tr valign="top"> <TD>totalk </ TD > <TD>数据表中的合计</ TD> </ TR> <tr valign="top"> <TD>I </ TD> <TD>的活动行数</ TD> </ TR > <tr valign="top"> <TD> namei </ TD> <TD>的活动行的名称</ TD> </ TR> <tr valign="top"> <TD><X > </ TD> <TD>边际的活动行</ TD> </ TR> <tr valign="top"> <TD>fi </ TD> <TD>预测活动行</ TD> </ TR> <tr valign="top"> <TD> Fs </ TD> <TD>卡方距离的活动行其平均</ TD> </ TR> <TR VALIGN =“顶”> <TD>d2i </ TD> <TD>的活动列数</ TD> </ TR> <tr valign="top"> <TD>J </ TD> <TD>活动列的名称</ TD> </ TR> <tr valign="top"> <TD>namej </ TD> <TD>边际的活动列</ TD> </ TR> <tr valign="top"> <TD>fj </ TD> <TD>预测活动列</ TD> </ TR> <tr valign="top"> <TD> X> </ TD> <TD>卡方距离的活动列,他们的平均</ TD> </ TR> <tr valign="top"> <TD>Gs </ TD> <TD >的补充行数</ TD> </ TR> <tr valign="top"> <TD> d2j </ TD> <TD>补充行的名称</ TD> </ TR> <TR VALIGN =“”> <TD>Isr </ TD> <TD>边际的补充行</ TD> </ TR> <tr valign="top"> <TD>nameisr / TD> <TD>补充行预测</ TD> </ TR> <tr valign="top"> <TD> fisr </ TD> <TD>卡方距离的补充行到平均</ TD> </ TR> <tr valign="top"> <TD>Fssr </ TD> <TD>矩阵X行补充</ TD> </ TR> <TR VALIGN =“顶“<TD>d2isr </ TD> <TD>补充列数</ TD> </ TR> <tr valign="top"> <TD> Xsr </ TD> <TD>辅助列的名称</ TD> </ TR> <tr valign="top"> <TD>Jsc </ TD> <TD>边际的补充列</ TD> </ TR> <tr valign="top"> <TD> namejsc </ TD> <TD>预测的补充列</ TD> </ TR> <tr valign="top"> <TD>fjsc </ TD> <TD>辅助列的卡方距离的平均值</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Amaya Zarraga, Beatriz Goitisolo
参考文献----------References----------
Greenacre, M. (2007). Correspondence Analysis in Practice. 2nd edition. Chapman and Hall/CRC, London.
Lebart, L; Piron, M., Morineau, A. (2006). Statistique exploratoire multidimensionnelle: visualisations et inferences en fouille de donnees. 4th edition. Dunod, Paris.
参见----------See Also----------
CorrAnGraph, CorrAnSummary
CorrAnGraph,CorrAnSummary
实例----------Examples----------
data(shoplifting)
dataCA <- shoplifting[1:13, 1:9]
### CA without supplementary elements[##CA没有补充元素]
CorrAn(data=dataCA)
### CA with supplementary rows/columns[##CA与补充的行/列]
CorrAn(data=dataCA, sr=13, sc=9)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|