找回密码
 注册
查看: 310|回复: 0

R语言 simPopulation包 simComponents()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 09:13:34 | 显示全部楼层 |阅读模式
simComponents(simPopulation)
simComponents()所属R语言包:simPopulation

                                         Simulate components of continuous variables of population data
                                         连续变量的模拟元件的人口数据

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Simulate components of continuous variables of population data by resampling  fractions from survey data.  The continuous variable to be split and any  categorical conditioning variables need to be simulated beforehand.
重采样部分调查数据,人口数据的连续变量的模拟元件。连续变量的分割和任何明确的条件变量需要事先要模拟。


用法----------Usage----------


simComponents(dataS, dataP, w = "rb050", total = "netIncome",
              components = c("py010n", "py050n", "py090n",
                "py100n", "py110n", "py120n", "py130n", "py140n"),
              conditional = c(getCatName(total), "pl030"),
              replaceEmpty = c("sequential", "min"), seed)



参数----------Arguments----------

参数:dataS
a data.frame containing household survey data.
data.frame包含家庭调查数据。


参数:dataP
a data.frame containing the simulated population data.
data.frame包含模拟的人口数据。


参数:w
a character string specifying the column of dataS that  contains the (personal) sample weights, which are used as probability  weights for resampling.
指定dataS的列的字符字符串包含(个人)的样本权重,这是用来作为概率加权重采样。


参数:total
a character string specifying the continuous variable of  dataP that should be split into components.  Currently, only one  variable can be split at a time.
一个字符串指定的连续变量dataP,应分为组件。目前,只有一个变量在同一时间可以被分割。


参数:components
a character vector specifying the components in  dataS that should be simulated for the population data.
指定字符向量中的组件dataS,应该是模拟的人口数据。


参数:conditional
an optional character vector specifying categorical  contitioning variables for resampling.  The fractions occurring in  dataS are then drawn from the respective subsets defined by these  variables.
一个可选的字符向量指定分类contitioning的变量的重采样。发生的馏分在dataS然后来自这些变量所定义的各自的子集。


参数:replaceEmpty
a character string; if conditional specifies at  least two conditioning variables, this determines how replacement cells for  empty subsets in the sample are obtained.  If "sequential", the  conditioning variables are browsed sequentially such that replacement cells  have the same value in one conditioning variable and minimum Manhattan  distance in the other conditioning variables.  If no such cells exist,  replacement cells with minimum overall Manhattan distance are selected.   The latter is always done if this is "min" or only one conditioning  variable is used.
一个字符串;若conditional指定至少两个条件变量,这决定如何得到更换单元样品中的子集为空。如果"sequential",调理变量浏览顺序如更换单元具有相同的值在一个调节变量和最小曼哈顿距离中的其他条件变量。如果不存在这样的单元,替代单元与最低整体曼哈顿距离的选择。后者则是一直在做,如果这是"min"或只有一个调节变量使用。


参数:seed
optional; an integer value to be used as the seed of the random  number generator, or an integer vector containing the state of the random  number generator to be restored.
可选的,一个整数的值被用作种子的随机数发生器,或一个整数矢量包含随机数发生器的状态,以被恢复。


值----------Value----------

A data.frame containing the simulated population data including the  components of the continuous variable specified by total.
Adata.frame包含模拟的人口数据包括连续变量指定的total的组成部分。


注意----------Note----------

The basic household structure, any categorical conditioning variables and the  continuous variable to be split need to be simulated beforehand with the  functions simStructure, simCategorical and  simContinuous.
家庭的基本结构,任何明确的条件变量和连续变量进行分割,需要事先与模拟功能simStructure,simCategorical和simContinuous。


(作者)----------Author(s)----------


Stefan Kraft and Andreas Alfons



参见----------See Also----------

simStructure, simCategorical,  simContinuous, simEUSILC
simStructure,simCategorical,simContinuous,simEUSILC


实例----------Examples----------


## Not run: [#不运行:]

## these take some time and are not run automatically[#这需要一定的时间,并没有自动运行]
## copy & paste to the R command line[#复制和粘贴到R命令行]

set.seed(1234)  # for reproducibility[可重复性]
data(eusilcS)   # load sample data[加载示例数据]
eusilcP <- simStructure(eusilcS)
eusilcP <- simCategorical(eusilcS, eusilcP)
basic <- c("age", "rb090", "hsize", "pl030", "pb220a")
eusilcP <- simContinuous(eusilcS, eusilcP,
    basic = basic, upper = 200000, equidist = FALSE)
# categorize net income for use as conditioning variable[分类净收入用于作为调节变量]
breaks <- getBreaks(eusilcS$netIncome, eusilcS$rb050,
    upper=Inf, equidist = FALSE)
eusilcS$netIncomeCat <- getCat(eusilcS$netIncome, breaks)
eusilcP$netIncomeCat <- getCat(eusilcP$netIncome, breaks)
# simulate net income components[模拟净收入组件]
eusilcP <- simComponents(eusilcS, eusilcP)
summary(eusilcP)

## End(Not run)[#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-5-24 17:05 , Processed in 0.025734 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表