two.boot(simpleboot)
two.boot()所属R语言包:simpleboot
Two sample bootstrap of differences between univariate statistics.
两个样本引导的单变量统计之间的差异。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
two.boot is used to bootstrap the difference between various univariate statistics. An example is the difference of means. Bootstrapping is done by independently resampling from sample1 and sample2.
two.boot是用来引导各种单变量统计之间的差异。其中一个例子是装置的差异。自举是由独立的重采样sample1和sample2。
用法----------Usage----------
two.boot(sample1, sample2, FUN, R, student = FALSE, M, weights = NULL, ...)
参数----------Arguments----------
参数:sample1
First sample; a vector of numbers.
第一次采样的数字向量。
参数:sample2
Second sample; a vector of numbers.
第二个样品;数字向量。
参数:FUN
The statistic which is applied to each sample. This can be a quoted string or a function name.
的统计量被施加到各样品中。这可以是一个带引号的字符串或函数名。
参数:R
Number of bootstrap replicates.
复制数目引导。
参数:student
Should we do a studentized bootstrap? This requires a double bootstrap so it might take longer.
如果我们做一个学生化的引导?这需要一个双引导,因此它可能需要更长的时间。
参数:M
If student is set to TRUE, then M is the number of internal bootstrap replications to do.
student如果设置为TRUE,然后M是内部自举复制的数量。
参数:weights
Resampling weights; a list with two components. The first component of the list is a vector of weights for sample1 and the second component of the list is a vector of weights for sample2.
重新取样权重;两部分组成的列表。列表中的第一个组成部分是一个sample1和列表中的第二组分是一种sample2的权重矢量的权重向量。
参数:...
Other (named) arguments that should be passed to FUN.
(命名)的参数被传递给FUN。
Details
详细信息----------Details----------
The differences are always taken as FUN(sample1) - FUN(sample2). If you want the difference to be reversed you need to reverse the order of the arguments sample1 and sample2.
它们之间的差异总是被看成FUN(sample1) - FUN(sample2)。如果你想被逆转的差异,你需要扭转的参数sample1和sample2的顺序。
值----------Value----------
An object of class "simpleboot", which is almost identical to the regular "boot" object. For example, the boot.ci function can be used on this object.
类的一个对象"simpleboot",这是几乎相同的定期"boot"对象。 boot.ci函数例如,可以使用在此对象。
(作者)----------Author(s)----------
Roger D. Peng
实例----------Examples----------
set.seed(50)
x <- rnorm(100, 1) ## Mean 1 normals[#平均1法线]
y <- rnorm(100, 0) ## Mean 0 normals[#均值为0的法线]
b <- two.boot(x, y, median, R = 1000)
boot.ci(b) ## No studentized confidence intervals[#没有学生化的置信区间]
hist(b) ## Histogram of the bootstrap replicates[#直方图的引导复制]
b <- two.boot(x, y, quantile, R = 1000, probs = .75)
## With weighting[#加权]
## Here all members of the first group has equal weighting[第一组的所有成员都有平等的权重]
## but members of the the second have unequal weighting[的第二不平等的加权]
w <- list(rep(1, 100), 100:1)
bw <- two.boot(x, y, median, R = 1000, weights = w)
boot.ci(b)
## Studentized[#学生化]
bstud <- two.boot(x, y, median, R = 500, student = TRUE, M = 50)
boot.ci(bstud, type = "stud")
## Studentized with weights[#学生化与权重]
bwstud <- two.boot(x, y, median, R = 500, student = TRUE, M = 50,
weights = w)
boot.ci(bstud, type = "stud")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|