resampletest(shapes)
resampletest()所属R语言包:shapes
Tests for mean shape difference using complex arithmetic, including bootstrap and permutation tests.
测试使用复杂的算术平均值的形状差异,包括引导和排列测试。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Carries out tests to examine differences in mean shape between two independent populations. For 2D data the methods use complex arithmetic and exploit the geometry of the shape space (which is the main use of this function). An alternative faster, approximate procedure using Procrustes residuals is given by the function "testmeanshapes". For 3D data tests are carried out on the Procrustes residuals, which is an approximation suitable for small variations in shape.
进行测试,以检验两个独立的群体的平均形状之间的差异。对于2D数据的方法使用复杂的算术和利用的形状空间的几何形状(这是主要的使用此功能)。的另一种速度更快,使用普鲁克残差近似的过程由功能的testmeanshapes“。对于3D数据进行了试验,对普鲁克残差,这是一个近似的形状适合于小的变化。
Up to four test statistics are calculated:
多达4个检验统计量的计算方法:
lambda : the asymptotically pivotal statistic $lambda_min$ from Amaral et al. (2007), equ.(14),(16) (m=2 only)
拉姆达的渐近举足轻重的统计lambda_min阿马拉尔等。 (2007年),设备(14),(16)(m = 2的只)
H : Hotelling $T^2$ statistic (see Amaral et al., 2007, equ.(23), Dryden and Mardia, 1998, equ.(7.4))
H:的Hotelling T ^ 2统计(见阿马拉尔等。,2007年,设备(23),德莱顿和Mardia,1998年,设备(7.4))
J : James' statistic (see Amaral et al., 2007, equ.(24) ) (m=2 only)
J:詹姆斯的统计(见阿马拉尔等人,2007年,设备(24))(M = 2)
G : Goodall's F statistic (see Amaral et al., 2007, equ.(25), Dryden and Mardia, 1998, equ.(7.9))
G:Goodall的F统计量(见阿马拉尔等。,2007年,设备(25),德莱顿和Mardia,1998年,设备(7.9))
p-values are given based on resampling as well as the usual table based p-values.
p-值是给定的基础上重新取样以及通常的表为基础的p-值。
Note when the sample sizes are low (compared to the number of landmarks) some regularization is carried out. In particular if Sw is a singular within group covariance matrix, it is replaced by Sw + 0.000001 (Identity matrix) and a "*" is printed in the output.
请注意,当样本数低(地标建筑的数量相比)进行一些规范化。特别是如果SW是一个单一的组内协方差矩阵,取代SW + 0.000001(单位矩阵)和印有“*”的输出。
用法----------Usage----------
resampletest(A, B, resamples = 200, replace = TRUE)
参数----------Arguments----------
参数:A
The random sample for group 1: k x m x n1 array of data, where k is the number of landmarks and n1 is the sample size. (Alternatively a k x n1 complex matrix for 2D)
第1组:kxmx的N1阵列的数据,其中k是数的地标和N1随机抽样的样本量。 (另外一个k x为N1复杂的2D矩阵)
参数:B
The random sample for group 3: k x m x n2 array of data, where k is the number of landmarks and n2 is the sample size. (Alternatively a k x n2 complex matrix for 2D)
3组:kxmx N2的数组中的数据,其中k是数的地标和n2是随机抽样的样本大小。 (另外一个K X N2复杂的2D矩阵)
参数:resamples
Integer. The number of resampling iterations. If resamples = 0 then no resampling procedures are carried out, and the tabular p-values are given only.
整数。重采样的迭代的数量。如果重新采样= 0,则没有再采样程序进行,而只给出了片状的p-值。
参数:replace
Logical. If replace = TRUE then for 2D data bootstrap resampling is carried out with replacement *within* each group. If replace = FALSE then permutation resampling is carried out (sampling without replacement in *pooled* samples).
逻辑。如果更换= TRUE然后进行2D数据引导重采样的与更换* *各组内。如果更换= FALSE,则置换重采样(采样*合并*样品无需更换)。
值----------Value----------
A list with components (or a subset of these)
的组件的列表(或一个子集,这些)
参数:lambda
$lambda_min$ statistic
$ lambda_min统计
参数:lambda.pvalue
p-value for $lambda_min$ test based on resampling
p值$ lambda_min试验的基础上重新取样
参数:lambda.table.pvalue
p-value for $lambda_min$ test based on the asymptotic chi-squared distribution (large n1,n2)
p值$ lambda_min试验的基础上的渐进卡方分布(大N1,N2)
参数:H
The Hotelling $T^2$ statistic
的Hotelling T ^ 2统计
参数:H.pvalue
p-value for the Hotelling $T^2$ test based on resampling
p值的霍特林$ T ^ 2检验的基础上重新取样
参数:H.table.pvalue
p-value for the Hotelling $T^2$ test based on the null F distribution, assuming normality and equal covariance matrices
p值的霍特林$ T ^ 2检验空的F分布的基础上,假设正常和平等的协方差矩阵
参数:J
The Hotelling $T^2$ statistic
的Hotelling T ^ 2统计
参数:J.pvalue
p-value for the Hotelling $T^2$ test based on resampling
p值的霍特林$ T ^ 2检验的基础上重新取样
参数:J.table.pvalue
p-value for the Hotelling $T^2$ test based on the null F distribution, assuming normality and unequal covariance matrices
p值的霍特林$ T ^ 2检验空的F分布的基础上,假设正常和不平等的协方差矩阵
参数:G
The Goodall $F$ statistic
古道尔$ F $统计
参数:G.pvalue
p-value for the Goodall test based on resampling
p值的珍古德测试的基础上重新取样
参数:G.table.pvalue
p-value for the Goodall test based on the null F distribution, assuming normality and equal isotropic covariance matrices)
p值古道尔测试空的F分布的基础上,假设正态性和各向同性的协方差矩阵相等)
(作者)----------Author(s)----------
Ian Dryden
参考文献----------References----------
$k$-sample problems in directional statistics and shape analysis. Journal of the American Statistical Association. 102, 695-707.
Wiley, Chichester. Chapter 7.
of shape (with discussion). Journal of the Royal Statistical Society, Series B, 53: 285-339.
参见----------See Also----------
testmeanshapes
testmeanshapes
实例----------Examples----------
#2D example : female and male Gorillas[2D例如:雌性和雄性大猩猩]
data(gorf.dat)
data(gorm.dat)
#just select 3 landmarks and the first 10 observations in each group[选择3的地标和10个观察各组第一]
select<-c(1,2,3)
A<-gorf.dat[select,,1:10]
B<-gorm.dat[select,,1:10]
resampletest(A,B,resamples=100)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|