cvSGL(SGL)
cvSGL()所属R语言包:SGL
Fit and cross-validate a GLM with a combination of lasso and group lasso regularization
安装并验证GLM的套索,套索正规化组相结合
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fits and cross-validates a regularized generalized linear model via penalized maximum likelihood. The model is fit for a path of values of the penalty parameter, and a parameter value is chosen by cross-validation. Fits linear, logistic and Cox models.
适合和交叉验证通过惩罚最大似然正规化广义线性模型。该模型是适合的罚参数的值的路径,并选择一个参数值是由交叉验证。适用于线性,MF和Cox模型。
用法----------Usage----------
cvSGL(data, index, type = "linear", maxit = 1000, thresh = 0.001, min.frac = 0.05, nlam = 20, gamma = 0.8, nfold = 10, standardize = TRUE, verbose = FALSE, step = 1, reset = 10, alpha = 0.95, lambdas = NULL)
参数----------Arguments----------
参数:data
For type="linear" should be a list with $x$ an input matrix of dimension n-obs by p-vars, and $y$ a length $n$ response vector. For type="logit" should be a list with $x$, an input matrix, as before, and $y$ a length $n$ binary response vector. For type="cox" should be a list with x as before, time, an n-vector corresponding to failure/censor times, and status, an n-vector indicating failure (1) or censoring (0).
对于type="linear"应该是一个列表,$ X $输入矩阵的维N-OBS对增值分销商,和$ Y $的长度为$ n $响应向量。对于type="logit"应该是一个列表$ X $,输入矩阵,和以前一样,和$ y $的长度$ n $的二进制响应向量。对于type="cox"应与x是一个列表,像以前一样,time,对应于故障的n矢量/检查员倍,和status,一个n矢量表示失败(1)或设限(0)。
参数:index
A p-vector indicating group membership of each covariate
一个P-矢量表示组成员的每个协
参数:type
model type: one of ("linear","logit", "cox")
(“线性”,“的罗吉特”,“考克斯”)模型类型:
参数:maxit
Maximum number of iterations to convergence
最大迭代次数收敛
参数:thresh
Convergence threshold for change in beta
收敛阈值处于测试阶段的变化
参数:min.frac
The minimum value of the penalty parameter, as a fraction of the maximum value
罚参数的最小值,作为最大值的一小部分
参数:nlam
Number of lambda to use in the regularization path
号码的lambda使用的规范化路径
参数:gamma
Fitting parameter used for tuning backtracking (between 0 and 1)
拟合参数用于调整回溯(0和1之间)
参数:nfold
Number of folds of the cross-validation loop
倍数交叉验证循环数
参数:standardize
Logical flag for variable standardization prior to fitting the model.
逻辑标志变量标准化拟合模型之前。
参数:verbose
Logical flag for whether or not step number will be output
逻辑标志是否步数,将输出
参数:step
Fitting parameter used for inital backtracking step size (between 0 and 1)
拟合参数用于>初始回溯步长(在0和1之间)
参数:reset
Fitting parameter used for taking advantage of local strong convexity in nesterov momentum (number of iterations before momentum term is reset)
拟合参数用于利用当地的强凸涅斯捷罗夫势头(迭代次数动量项是复位前)
参数:alpha
The mixing parameter. alpha = 1 is the lasso penalty.
混合参数。 alpha= 1是的套索处罚。
参数:lambdas
A user inputted sequence of lambda values for fitting. We recommend leaving this NULL and letting SGL self-select values
用户输入序列的lambda值拟合。我们建议保留这个NULL,让SGL自我选择的值
Details
详细信息----------Details----------
The function runs SGL nfold+1 times; the initial run is to find the lambda sequence, subsequent runs are used to compute the cross-validated error rate and its standard deviation.
功能运行SGLnfold+1倍的初始运行lambda序列,随后的运行中被用来计算的交叉验证错误率及其标准差。
值----------Value----------
An object with S3 class "cv.SGL"
对象与S3类"cv.SGL"
参数:lldiff
An nlam vector of cross validated negative log likelihoods (squared error loss in the linear case, along the regularization path)
nlam向量的跨验证的负对数似然(平方误差损失linear情况下,正规化路径)
参数:llSD
An nlame vector of approximate standard deviations of lldiff
nlame矢量近似标准差lldiff的
参数:lambdas
The actual list of lambda values used in the regularization path.
实际的lambda列表中使用的值的正则路径。
参数:type
Response type (linear/logic/cox)
响应类型(线性/逻辑/ COX)
参数:fit
A model fit object created by a call to SGL on the entire dataset
模型适合创建的对象通过调用SGL对整个数据集的
(作者)----------Author(s)----------
Noah Simon, Jerry Friedman, Trevor Hastie, and Rob Tibshirani<br>
Maintainer: Noah Simon <a href="mailto:nsimon@stanford.edu">nsimon@stanford.edu</a>
参考文献----------References----------
A Sparse-Group Lasso, <br> http://www-stat.stanford.edu/~nsimon/SGL.pdf
参见----------See Also----------
SGL
SGL
实例----------Examples----------
set.seed(1)
n = 50; p = 100; size.groups = 10
index <- ceiling(1:p / size.groups)
X = matrix(rnorm(n * p), ncol = p, nrow = n)
beta = (-2:2)
y = X[,1:5] %*% beta + 0.1*rnorm(n)
data = list(x = X, y = y)
cvFit = cvSGL(data, index, type = "linear")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|