nhppSimConstWindowAnalysis(seqCBS)
nhppSimConstWindowAnalysis()所属R语言包:seqCBS
Analyze the performance on simulation with constant signal length in each set
恒定的信号长度在每一组的性能仿真与分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Takes the dataset and metafile output of nhppSimConstWindowGen and of SegSeq, then evaluates the performance in change-point precision and recall. The dataset must be generated in such format for this function to work.
nhppSimConstWindowGen和的SegSeq,采用的数据集和图元文件输出,然后计算转换点的精确度和召回的性能。数据集必须生成这种格式此功能工作。
用法----------Usage----------
nhppSimConstWindowAnalysis(filePrefix, chromosomeN, distMetric=c(20,50,100,150,200,300,500,1000), cptLen=c(3,5,8,12,15,20,30,50,100), nPair=2, nRepeat=10, statistic="normal", grid.size="auto", takeN=5, maxNCut=60, minStat=5, verbose=FALSE, timing=TRUE, hasRun=FALSE, width=12, height=6)
参数----------Arguments----------
参数:filePrefix
The first part of the filename for data and metafile generated by nhppSimConstWindowGen
第一部分所产生的nhppSimConstWindowGen的数据和图元文件的文件名
参数:chromosomeN
The number indicating the chromosome number the dataset emulates
数据集模拟的染色体数目的编号与表示
参数:distMetric
A set of criterions of determining change points called are true. A call is deemed true if an actual signal change points within x number of reads is matched to it, after a minimum-cost bipartite matching. Larger value is a looser criterion.
一组准则确定变化点称为是真实的。呼叫被认为是真实的,如果一个实际的信号变化在x点的读取数量相匹配,后一个最低成本的二分匹配。较大的值是一个较宽松的标准。
参数:cptLen
The second part of the filename for data and metafile generated by nhppSimConstWindowGen, indicating the length of the true signal. Constant width of the signal (CN gain or loss) region to simulate, can be a vector of different values for which to test
用于数据和图元文件生成的nhppSimConstWindowGen,指示的真实信号的长度的文件名的第二部分。恒定的宽度的信号的区域(CN增益或损失)来模拟,可以是一个不同的值测试向量
参数:nPair
A part of the filename for data and metafile generated by nhppSimConstWindowGen, indicating the number of normal/tumor pair. Number of tumor samples to generate for each choice of the width of the signal; number of normal samples to generate
的一部分,所产生的nhppSimConstWindowGen的数据和图元文件的文件名,表示正常/肿瘤对数。肿瘤样本的每个选择的信号的宽度来生成数;正常的样本来生成的数
参数:nRepeat
A part of the filename for data and metafile generated by nhppSimConstWindowGen. Number of times to repeat the simulation data generation
所产生的nhppSimConstWindowGen的数据和图元文件的文件名的一部分。的次数重复的模拟数据生成
参数:statistic
The type of statistic to use for the analysis
统计的类型,使用的分析
参数:grid.size
Argument to ScanCBS
参数ScanCBS
参数:takeN
Argument to ScanCBS
参数ScanCBS
参数:maxNCut
Argument to ScanCBS
参数ScanCBS
参数:minStat
Argument to ScanCBS
参数ScanCBS
参数:verbose
If TRUE, will print run information as the algorithm proceeds
如果TRUE,将打印运行信息的算法进行
参数:timing
Performs timing of the ScanCBS algorithm
ScanCBS算法执行的时间
参数:hasRun
If TRUE, will read the output file of ScanCBS instead of run it on these datasets again. Only use when the same call to ScanCBS has been used before in this function call.
如果TRUE,将读取ScanCBS,而不是再次运行它,这些数据集的输出文件。只有使用相同的呼叫ScanCBS已使用过的在这个函数的调用。
参数:width
Width of the graph output file
宽度的曲线图的输出文件
参数:height
Height of the graph output file
高度的曲线图的输出文件
Details
详细信息----------Details----------
This function is used in conjunction with nhppSimConstWindowGen. It reads in the data and metafile output of the said function, and compares the performance of our algorithm with SegSeq. It is important that SegSeq has been used on the simulation datasets generated before using this.
此功能是用于结合使用nhppSimConstWindowGen。它读取的所述功能的数据和图元文件输出,并与SegSeq我们的算法的性能进行比较。重要的是,已被用于对使用此之前产生的仿真数据集SegSeq。
值----------Value----------
<table summary="R valueblock"> <tr valign="top"><td>simCBS </td> <td> Result of ScanCBS output structure</td></tr> <tr valign="top"><td>CBSMatchDist </td> <td> The distance among reads after minimum-cost bipartite graph matching for our algorithm</td></tr> <tr valign="top"><td>SegMatchDist </td> <td> The distance among reads after minimum-cost bipartite graph matching for SegSeq</td></tr> <tr valign="top"><td>CBSRecall, SegRecall </td> <td> The recall rates of two algorithms</td></tr> <tr valign="top"><td>CBSPrecision, SegPrecision </td> <td> The precision rates of two algorithms</td></tr> <tr valign="top"><td>CBSFMeasure, SegFMeasure </td> <td> The F-measure of two algorithms</td></tr> <tr valign="top"><td>trueTauMeanSigLen </td> <td> The mean distance between true signal boundaries</td></tr> <tr valign="top"><td>nTrueTau </td> <td> The number of true change points</td></tr> <tr valign="top"><td>nCBSCall, nSegCall </td> <td> Number of change points called by the two algorithms</td></tr> <tr valign="top"><td>CBSTime </td> <td> Mean computational time of ScanCBS for each signal length</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> simCBS </ TD> <TD>结果ScanCBS输出结构</ TD> </ TR> < TR VALIGN =“”> <TD>CBSMatchDist </ TD> <TD>之间的距离,读取后,我们的最低成本的二分图匹配的算法</ TD> </ TR> <TR VALIGN =“顶部“> <TD> SegMatchDist </ TD> <TD>之间的距离,读取后,成本最低的二分图匹配SegSeq </ TD> </ TR> <tr valign="top"> <TD> CBSRecall, SegRecall </ TD> <TD>两种算法的召回率</ TD> </ TR> <tr valign="top"> <TD>CBSPrecision, SegPrecision </ TD> <TD>的精度两种算法率</ TD> </ TR> <tr valign="top"> <TD>CBSFMeasure, SegFMeasure </ TD> <TD>衡量两种算法的F-</ TD> </ TR> <tr valign="top"> <TD> trueTauMeanSigLen </ TD> <TD>真实信号的边界之间的平均距离</ TD> </ TR> <tr valign="top"> <TD> nTrueTau </ TD> <TD>真正的变化点的数量</ TD> </ TR> <tr valign="top"> <TD>nCBSCall, nSegCall </ TD> <TD>数由两种算法的变化点称为</ TD> </ TR> <tr valign="top"> <TD>CBSTime </ TD> <TD>平均计算时间ScanCBS每个信号长度</ TD> </ TR> </ TABLE>
(作者)----------Author(s)----------
Jeremy J. Shen
参见----------See Also----------
nhppSimConstWindowGen
nhppSimConstWindowGen
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|