optimal(selectiongain)
optimal()所属R语言包:selectiongain
Searching for optimal traits
寻找最佳特征
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Maximize trait-convergence assembly patterns (TCAP = roTE), trait-divergence assembly patterns (TDAP = roXE.T) or maximize both trait-divergence assembly patterns and trait-convergence assembly patterns (TCAP.TDAP = roXE). For more details, see syncsa.
最大化的特质收敛组装模式(TCAP =死记硬背),性状分歧组件模式(TDAP = roXE.T)或性状分歧组件模式和收敛特征组装模式(TCAP.TDAP = roXE)的最大化。有关详细信息,请参阅syncsa。
用法----------Usage----------
optimal(comm, envir, traits, subset = 3, pattern = "tcap" , dist = "euclidean", method = "pearson", scale = TRUE, scale.envir = TRUE)
参数----------Arguments----------
参数:comm
Community data, with species as columns and sampling units as rows. This matrix can contain either presence/absence or abundance data.
社区数据,列和行的抽样单位的物种。这个矩阵可以包含存在/不存在或丰度数据。
参数:traits
Matrix data of species described by traits, with traits as columns and species as rows.
矩阵数据的物种所描述的特征,列和行的物种性状。
参数:envir
Environmental variables for each community, with variables as columns and sampling units as rows.
每个社区的环境变量,变量的列和行的抽样单位。
参数:subset
Maximum of traits in each subset (Default subset=3).
最大的特征在每个子集(默认的子集= 3)。
参数:pattern
Patterns for maximize correlation, "tcap","tdap" or "tcap.tdap" (Default pattern="tcap").
为最大限度地提高相关性,“TCAP”,“TDAP”或者“tcap.tdap”的(预设模式=“TCAP”)的模式。
参数:method
Correlation method, as accepted by cor: "pearson", "spearman" or "kendall".
相关方法,接受相应:“培生”,“长枪兵”或“肯德尔”。
参数:dist
Dissimilarity index, as accepted by vegdist: "manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower", "morisita", "horn", "mountford", "raup" , "binomial" or "chao".
相异指数,接受vegdist:“曼哈顿”,“欧几里得”,“堪培拉”,“布雷”中,“kulczynski”,“杰卡德”,“高尔”中,“altGower”,“ morisita“,”角“,”芒福德“,”劳普“,”二项式“或”炒“。
参数:scale
Logical argument (TRUE or FALSE) to specify if the traits are measured on different scales (Default Scale = TRUE). Scale = TRUE if traits are measured on different scales, the matrix T is subjected to standardization within each trait. Scale = FALSE if traits are measured on the same scale, the matrix T is not subjected to standardization. Furthermore, if Scale = TRUE the matrix of traits is subjected to standardization within each trait, and Gower Index is used to calculate the degree of belonging to the species, and if Scale = FALSE the matrix of traits is not subjected to standardization, and Euclidean distance is calculated to determine the degree of belonging to the species.
逻辑参数(TRUE或FALSE)指定的特性测量不同尺度上(默认的比例= TRUE)。规模= TRUE,如果性状在不同的尺度衡量,矩阵T的标准化在每个特征。规模= FALSE,如果性状测量在相同的规模,矩阵T是不会受到标准化。此外,如果量程= TRUE性状的矩阵内各性状进行标准化,高尔指数是用来计算属于该物种的程度,并且如果量程= FALSE性状的矩阵不进行标准化,并欧几里德距离被计算,以确定属于该物种的程度。
参数:scale.envir
Logical argument (TRUE or FALSE) to specify if the environmental variables are measured on different scales (Default Scale = TRUE). If the enviromental variables are measured on different scales, the matrix is subjected to centralization and standardization within each variable.
逻辑参数(TRUE或FALSE),到指定的环境变量都在不同尺度上(默认的比例= TRUE)。如果对环境之变量在不同尺度计量,每个变量矩阵内进行集中化和标准化。
值----------Value----------
参数:Subset
Subset of traits that maximizes the correlation.
的特征,最大限度地提高相关的子集。
参数:ro
Correlation for the subset of traits.
性状的子集的相关性。
警告----------Warning----------
Input data must be of class matrix (Tip: use function as.matrix to transform the data frame).
输入数据必须是类矩阵(提示:使用的功能as.matrix转换的数据框)。
<STRONG>IMPORTANT</STRONG>: The sequence species show up in community data matrix MUST be the same as they show up in traits matrix. See organize.syncsa.
<strong>重要提示</ STRONG>:序列的物种出现在社区数据矩阵必须是相同的,因为它们显示在特征矩阵。见organize.syncsa。
(作者)----------Author(s)----------
Vanderlei J煤lio Debastiani <vanderleidebastiani@yahoo.com.br>
参考文献----------References----------
参见----------See Also----------
syncsa, organize.syncsa
syncsa,organize.syncsa
实例----------Examples----------
data(flona)
optimal(flona$community,flona$environment,flona$traits,subset=5,pattern="tcap",scale=TRUE,scale.envir=TRUE)
optimal(flona$community,flona$environment,flona$traits,subset=5,pattern="tdap",scale=TRUE,scale.envir=TRUE)
optimal(flona$community,flona$environment,flona$traits,subset=5,pattern="tcap.tdap",scale=TRUE,scale.envir=TRUE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|