davies.test(segmented)
davies.test()所属R语言包:segmented
Testing for a change in the slope
测试中的斜率的变化
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Given a generalized linear model, the Davies' test can be employed to test for a non-constant regression parameter in the linear predictor.
广义线性模型,戴维斯的测试可以用来测试中的线性预测的非恒定回归参数。
用法----------Usage----------
davies.test(obj, seg.Z, k = 10, alternative = c("two.sided",
"less", "greater"), beta0=0, dispersion=NULL)
参数----------Arguments----------
参数:obj
a fitted model returned by glm or lm.
一个拟合模型返回的glm或lm。
参数:seg.Z
a formula with no response variable, such as seg.Z=~x1, indicating the (continuous) segmented variable being tested. Only a single variable may be tested and a warning is printed when seg.Z includes two or more terms.
没有响应变量的公式,如seg.Z=~x1,表明测试(连续)分段变量。只有一个变量可以进行测试时打印seg.Z包含两个或两个以上条款,并发出警告。
参数:k
number of points where the test should be evaluated. See details.
应评估测试的点的数目。查看详细信息。
参数:alternative
a character string specifying the alternative hypothesis.
一个字符串指定其他假设。
参数:beta0
the null value of the difference-in-slope; default to zero meaning no breakpoint, see details.
差异的斜率,默认的空值为零,意味着没有断点,查看详细信息。
参数:dispersion
the dispersion parameter for the family to be used to compute the Wald statistic. When NULL (the default), it is inferred from obj. Namely it is taken as 1 for the binomial and Poisson families, and otherwise estimated by the residual Chi-squared statistic (calculated from cases with non-zero weights) divided by the residual degrees of freedom.
为家庭的分散参数被用于计算Wald统计量。当NULL(默认值),它推断出obj。即它是作为1为二项分布和泊松家庭的,否则估计的剩余除以残差自由度的卡方统计(计算结果与非零权重的情况下)。
Details
详细信息----------Details----------
davies.test tests for a non zero difference-in-slope parameter of a segmented relationship. Namely, the null hypothesis is H_0:beta=beta0, where beta is the difference-in-slope, i.e. the coefficient of the segmented function beta*(x-psi)_+, and beta0 is the "null" value specified via the argument beta0. Roughtly speaking, the procedure computes k "naive" (i.e. assuming fixed and known the breakpoint) Wald statistics for the difference-in-slope, seeks the "best" value (according to the alternative hypothesis), and then corrects the selected (minimum) p-value. The k evaluation points are k equally spaced values between the 0.05 and 0.95 quantiles of the variable reported in seg.Z.
davies.test测试为非零差在一个分段的关系的斜率参数。也就是说,零假设是H_0:beta=beta0,beta是的差别斜率,即系数的分段函数beta*(x-psi)_+,beta0是空数值通过参数beta0。大概被来讲,程序计算k天真(即假设固定的和已知的断点)Wald统计量的差异坡,旨在“最好”的值(根据备择假设),然后校正所选的(最小的)p-值。 k评估点k等距值在0.05和0.95之间位数的变量在seg.Z。
值----------Value----------
A list with class 'htest' containing the following components:
列表类的htest包含以下组件:
参数:method
title (character)
标题(字符)
参数:data.name
the regression model and the segmented variable being tested
回归模型和分段变量测试
参数:statistic
the point at which the maximum (or the minimum if alternative="less") occurs
点的最大(或最小如果alternative="less")发生
参数:parameter
number of evaluation points
评价点的数量
参数:p.value
the adjusted p-value
调整后的p-值
参数:process
a two-column matrix including the evaluation points and corresponding values of the statistic
一个两列的矩阵,包括评价点和对应的统计值
注意----------Note----------
Strictly speaking, the Davies test is not confined to the segmented regression; the procedure can be applied when a nuisance parameter vanishes under the null hypothesis. The test is slightly conservative, as the computed p-value is actually an upper bound.
严格地说,戴维斯测试并不局限于分段回归滋扰参数时,可以应用的零假设下消失的过程。本试验是稍微保守的,因为所计算的p-值是实际的上限。
(作者)----------Author(s)----------
Vito M.R. Muggeo
参考文献----------References----------
实例----------Examples----------
## Not run: set.seed(20)[#不运行:set.seed的(20)]
z<-runif(100)
x<-rnorm(100,2)
y<-2+10*pmax(z-.5,0)+rnorm(100,0,2)
o<-lm(y~z+x)
davies.test(o,~z)
davies.test(o,~x)
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|