找回密码
 注册
查看: 443|回复: 0

R语言 secr包 secr-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-30 00:03:50 | 显示全部楼层 |阅读模式
secr-package(secr)
secr-package()所属R语言包:secr

                                        Spatially Explicit Capture–Recapture Models
                                         空间显式捕获 - 再捕获模型

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Functions to estimate the density and size of a spatially distributed animal population sampled with an array of passive detectors, such as traps, or by searching polygons or transects.
函数来估计在空间上分布的动物种群与被动检测器的阵列,如陷阱采样的密度和大小,或通过搜索多边形或断面。


Details

详细信息----------Details----------

Spatially explicit capture–recapture is a set of methods for studying marked animals distributed in space. Data comprise the locations of detectors (traps, searched areas, etc. described in an object of class "traps"), and the detection histories of individually marked animals. Individual histories are stored in an object of class "capthist" that includes the relevant "traps" object.
空间明确的捕获 - 再捕获方法是一组动物在空间分布的研究显着。数据包括位置检测器(陷阱,搜索区,等中描述的对象类“陷阱”),和单独标记的动物的检测历史。个人的历史都存储在一个对象类的capthist“,其中包括有关”陷阱“对象。

Models for population density (animals per hectare) and detection are defined in secr using symbolic formula notation. Density models may include spatial or temporal trend. Possible predictors for detection probability include both pre-defined variables (t, b, etc.) corresponding to "time", "behaviour" and other effects), and user-defined covariates of several kinds. Habitat is distinguished from nonhabitat with an object of class "mask".
人口密度(动物,每公顷)和检测模型中定义的secr使用符号公式符号。密度模型可能包括空间和时间的趋势。检测概率可能的预测包括两个预定义的变量(从t,b,等)相对应的时间,行为和其他效果),和用户定义的几种协变量。人居署区别于nonhabitat对象类的“面具”。

Models are fitted in secr by maximizing either the full likelihood or the likelihood conditional on the number of individuals observed (n). Conditional likelihood models are limited to homogeneous Poisson density, but allow continuous individual covariates for detection. Fitting (function secr.fit) creates an object of class secr. Generic methods (plot, print, summary, etc.) are provided for each object class.
最大化的可能性或个人观察到的数量的可能性条件,模型安装在secr(n“)。条件似然模型齐次泊松密度是有限的,但可以连续检测单个协变量。配件(功能secr.fit)创建一个对象类secr。通用方法(图,打印,汇总等),为每个对象类。

A link at the bottom of each help page takes you to the help index. Several vignettes complement the help pages:
在每一个帮助页面的底部的链接需要你的帮助索引。有几个小插曲补充的帮助页面:

The help pages are also available as ../doc/secr-manual.pdf.
帮助页面也可作为.. / DOC / SECR的手册。pdf。

The datasets possum, skink, ovenbird, housemouse, deermouse, ovensong, hornedlizard and stoatDNA include examples of fitted models.
的数据集的负鼠,石龙子,ovenbird,housemouse,deermouse,ovensong,hornedlizard和stoatDNA,包括拟合模型的例子。

The analyses in secr extend those available in the software Density (see www.otago.ac.nz/density for the most recent version of Density).  Help is available on the "DENSITY | secr" forum at www.phidot.org.  Feedback on the software is also welcome, including suggestions for additional documentation or new features consistent with the overall design.
分析secr扩展的软件中可用的密度(请参阅最新版本的密度www.otago.ac.nz /密度)。 “DENSITY | SECR”论坛在www.phidot.org帮助。对软件的反馈也欢迎,其中包括建议的其他文件或新的功能与整体设计保持一致。


致谢----------Acknowledgements----------

David Borchers made many of these methods possible with his work on the likelihood, and I'm grateful for his continuing advice. Jeff Laake provided encouragement and reviewed an early version. Ray Brownrigg got my Windows code running under Unix. Deanna Dawson edited some of the documentation (the cleaner bits!) and her support and collaboration were important throughout. Tiago Marques and Mike Meredith suggested many improvements to the documentation and provided valued criticism and support.
大卫BORCHERS这些方法可能与他的工作的可能性,并提出了许多我很感激他继续建议。杰夫Laake提供鼓励和审查的早期版本。雷布朗里格了我的Windows Unix下运行的代码。迪安娜道森编辑一些文档(清洁位)的支持和合作是很重要的。蒂亚戈马克斯和迈克·梅雷迪斯的文档,并提出了许多改进,提供了有价值的批评和支持。


(作者)----------Author(s)----------


Murray Efford <a href="mailto:murray.efford@otago.ac.nz">murray.efford@otago.ac.nz</a>



参考文献----------References----------

likelihood methods for capture&ndash;recapture studies. Biometrics 64, 377&ndash;385.
Oikos 106, 598&ndash;610.
explicit capture&ndash;recapture with area searches. Ecology 92, 2202&ndash;2207.
by spatially explicit capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy (eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255&ndash;269.
density estimated from locations of individuals on a passive detector array. Ecology 90, 2676&ndash;2682.
for analysing capture-recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217&ndash;228.

参见----------See Also----------

read.capthist, secr.fit, traps, capthist, mask
read.capthist,secr.fit,traps,capthist,mask


实例----------Examples----------


## Not run: [#不运行:]

## generate some data &amp; plot[#生成一些数据和图]
detectors  <- make.grid (nx = 10, ny = 10, spacing = 20,
    detector = "multi")
plot(detectors, label = TRUE, border = 0, gridspace = 20)
detections <- sim.capthist (detectors, noccasions = 5,
    popn = list(D = 5, buffer = 100),
    detectpar = list(g0 = 0.2, sigma = 25))
session(detections) <- "Simulated data"
plot(detections, border = 20, tracks = TRUE, varycol = TRUE)

## generate habitat mask[#生成栖息地的面具]
mask <- make.mask (detectors, buffer = 100, nx = 48)

## fit model and display results[#拟合模型并显示结果]
secr.model <- secr.fit (detections, model = g0~b, mask = mask)
secr.model


## End(Not run)[#(不执行)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-30 10:44 , Processed in 0.024286 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表